RENESAS

USER'S MANUAL

ISL6256AEVAL2Z

Low Cost Multi-Chemistry Battery Charger Controller Evaluation Board Setup Procedure

AN1364 Rev 0.00 Oct 25, 2007

The ISL6256AEVAL2Z Evaluation kit includes all the circuitry needed to demonstrate the capabilities of the ISL6256 Lithium-Ion battery-charger with integrated AC adapter current limit. The user can experiment with an extensive matrix of battery charge parameters, AC adapter current limit, monitor functions and load switching.

The ISL6256, ISL6256A is a highly integrated battery charger controller for Li-ion/Li-ion polymer batteries. High Efficiency is achieved by a synchronous buck topology and the use of a MOSFET, instead of a diode, for selecting power from the adapter or battery. The low side MOSFET emulates a diode at light loads to improve the light load efficiency and prevent system bus boosting.

The constant output voltage can be selected for 2-, 3- and 4-series Li-ion cells with 0.5% accuracy over-temperature. It can also be programmed between 4.2V +5%/cell and 4.2V -5%/cell to optimize battery capacity. When supplying the load and battery charger simultaneously, the input current limit for the AC adapter is programmable to within 3% accuracy to avoid overloading the AC adapter, and to allow the system to make efficient use of available adapter power for charging. It also has a wide range of programmable charging current. The ISL6256, ISL6256A provides outputs that are used to monitor the current drawn from the AC adapter, and monitor for the presence of an AC adapter. The ISL6256, ISL6256A automatically transitions from regulating current mode to regulating voltage mode.

ISL6256, ISL6256A has a feature for automatic power source selection by switching to the battery when the AC adapter is removed or switching to the AC adapter when the AC adapter is available. It also provides a DC adapter monitor to support aircraft power applications with the option of no battery charging.

Ordering Information

PART NUMBER (Note)	PART MARKING	TEMP RANGE (°C)	PACKAGE (Pb-free)	PKG. DWG. #
ISL6256HAZ*	ISL 6256HAZ	-10 to +100	28 Ld QSOP	M28.15
ISL6256AHAZ*	ISL6256 AHAZ	-10 to +100	28 Ld QSOP	M28.15

*Add "-T" suffix for tape and reel. Please refer to TB347 for details on reel specifications.

NOTE: These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate PLUS ANNEAL - e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pbfree peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

Features

- ±0.5% Charge Voltage Accuracy (-10°C to +100°C)
- ±3% Accurate Input Current Limit
- ±3% Accurate Battery Charge Current Limit
- ±25% Accurate Battery Trickle Charge Current Limit (ISL6256A)
- Programmable Charge Current Limit, Adapter Current Limit and Charge Voltage
- Fixed 300kHz PWM Synchronous Buck Controller with Diode Emulation at Light Load
- · Output for Current Drawn from AC Adapter
- AC Adapter Present Indicator
- Fast Input Current Limit Response
- Input Voltage Range 7V to 25V
- Support 2-, 3- and 4-Cell Battery Pack
- Up to 17.64V Battery-Voltage Set Point
- Control Adapter Power Source Select MOSFET
- Thermal Shutdown
- · Aircraft Power Capable
- DC Adapter Present Indicator
- Battery Discharge MOSFET Control
- Less than 10µA Battery Leakage Current
- · Support Pulse Charging
- Charge Any Battery Chemistry: Li-ion, NiCd, NiMH, etc.
- Pb-Free (RoHS Compliant)

Applications

- Notebook, Desknote and Sub-notebook Computers
- Personal Digital Assistant

Pinout

ISL6256. ISL6256A (28 LD QSOP)

TOP VIEW

DCIN	1	28	DCPRN
VDD	2	27	ACPRN
ACSET	3	26	CSON
DCSET	4	25	CSOP
EN	5	24	CSIN
CELLS	6	23	CSIP
ICOMP	7	22	SGATE
VCOMP	8	21	BGATE
ICM	9	20	PHASE
VREF	10	19	UGATE
CHLIM	11	18	BOOT
ACLIM	12	17	VDDP
VADJ	13	16	LGATE
GND	14	15	PGND

What's Inside

This Evaluation Board Kit contains the following materials:

- Qty(1) ISL625xEVAL2Z Evaluation Board
- Qty(1) ISL6256EVAL2Z Setup Procedure

What is Needed

The following materials are recommended to perform testing:

- One adjustable 25V 6A power supply
- Two adjustable electronic loads with constant current mode and constant voltage mode
- Two DVMs
- One 500MHz four channel oscilloscope
- · Four passive oscilloscope voltage probes
- Two 10ADC Current Probes
- One signal generator

Jumper Selection Guide

Step 1: Select the Number of Cells (Table 1)

The CELLS pin chooses the correct output voltage clamp for a given number of cells series-connected in the battery pack. Select the output voltage by placing a shunt jumper across the appropriate pins of JP1.

SHUNT JUMPER LOCATION	CELLS PIN CONNECTED TO:	NUMBER OF CELLS CONNECTED IN SERIES	100% CONSTANT OUTPUT VOLTAGE
1-2	VDD	4	16.8
2-3	GND	3	12.6
Removed	Floating	2	8.4

TABLE 1. JUMPER JP1 FUNCTIONS

Step 2: Select the Cell Trim Voltage (Table 2)

The VADJ pin trims the battery charger output voltage limit. Preset battery charger output voltage limits are selected by placing a shunt jumper across the appropriate pins of JP6. For other battery charger output voltage limits, install a shunt jumper across pins 3 and 4, which connects the wiper of potentiometer R24 to VADJ. Potentiometer R24 may be removed and replaced with resistors R_{19} and R_{21} . Resistor R_{20} limits the trim increase to 1%. Shorting R_{20} allows the trim to increase 5%. Decreasing trim range is unaffected.

SHUNT JUMPER LOCATION	VADJ PIN	BATTERY VOLTAGE CHANGI PER CELL	
1-3	Through R ₂₀ to VREF	+5%	
3-5	To GND	-5%	
5-6	Floating	None	
3-4	R24 Wiper or R ₁₉ /R ₂₁	Adjustable between -5% to +5%	

Step 3: Select the Battery Charger Current Limit (Table 3)

The CHLIM pin chooses the desired battery charger current limit threshold. Preset battery charger current limit thresholds are selected by placing a shunt jumper across the appropriate pins of JP4. For other battery charger current limit thresholds, install a shunt jumper across pins 3 and 4, which connects the wiper of potentiometer R22 to CHLIM. Potentiometer R22 may be removed and replaced with resistors R_6 and R_7 .

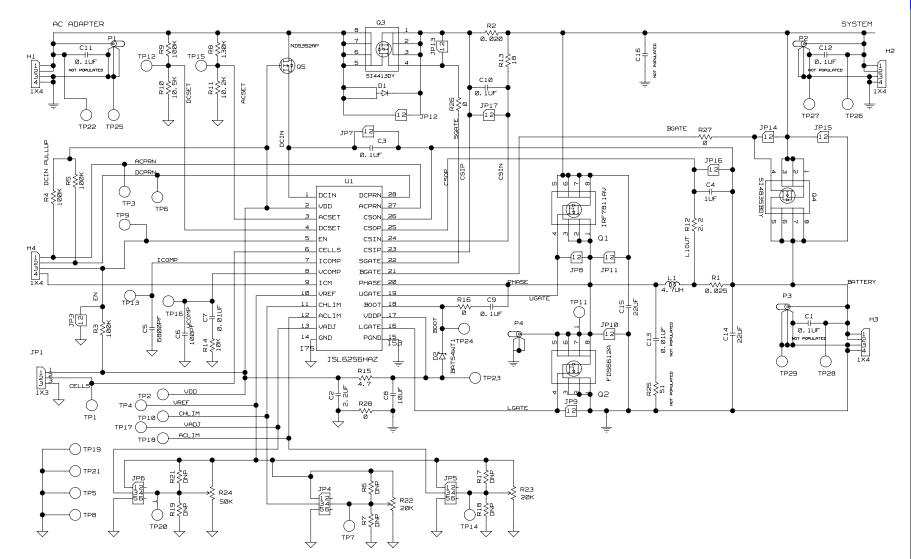
SHUNT JUMPER LOCATION	CHLIM PIN CONNECTED TO:	100% CURRENT FEEDBACK CSOP TO CSON	100% CONSTANT CURRENT
1-3	VREF	120mV	4.80A
Removed	Floating	0V	0A
3-5	GND	0V	0A
3-4	R22 or R ₆ /R ₇	0mV to 120mV	0A to 4.8A

TABLE 3. JUMPER JP4 FUNCTIONS

Step 4: Select the AC Adapter Current Limit (Table 4)

The ACLIM pin chooses the desired AC adapter current limit threshold. Preset AC adapter current limit thresholds are selected by placing a shunt jumper across the appropriate pins of JP5. For other AC adapter current limit thresholds, install a shunt jumper across pins 3 and 4, which connects the wiper of potentiometer R23 to ACLIM. Potentiometer R23 may be removed and replaced with resistors R₁₇ and R₁₈.

TABLE 4. JUMPER JP5 FUNCTIONS


SHUNT JUMPER LOCATION	ACLIM PIN CONNECTED TO:	100% CURRENT FEEDBACK CSIP TO CSIN	100% ADAPTER CURRENT
1-3	VREF	100mV	5.15A
Removed	Floating	75mV	3.90A
3-5	GND	50mV	2.65A
3-4	R23 or R ₁₇ /R ₁₈	50mV to 100mV	2.65A to 5.15A

Interface Connections

TABLE 5.			
HEADER	PIN#	CONNECT TO	
H1	1	"+" INPUT POWER	
Input Power	2	"+" SENSE (if used)	
	3	"-" SENSE (if used)	
	4	"-" INPUT POWER	
H2	1	"+" SYSTEM LOAD OUTPUT	
System Load	2	"+" SENSE (if used)	
Output	3	"-" SENSE (if used)	
	4	"-" SYSTEM LOAD OUTPUT	
H3	1	"+" BATTERY CHARGER OUTPUT	
Battery Charger	2	"+" SENSE (if used)	
Output	3	"-" SENSE (if used)	
	4	"-" BATTERY CHARGER OUTPUT	

ISL6256AEVAL2Z Schematic

TABLE 6. BILL OF MATERIALS				
QTY	REF DES	DESCRIPTION	MFG NAME	PART NUMBER
1	C6	Capacitor, SMD, 0603, 100pF, 50V, 5%, COG	ТDК	C1608COG1H101J
1	C7	Capacitor, SMD, 0805, 0.01µF, 50V, 5%, COG	ТDК	C2012COG1H103J
1	C5	Capacitor, SMD, 0805, 6800pF, 50V, 5%, COG	TDK	C2012COG1H682J
3	C2, C4, C8	Capacitor, SMD, 0805, 1.0µF, 16V, 20%, X7R	TDK	C2012X7R1C105M
3	C3, C9, C10	Capacitor, SMD, 0805, 0.1µF, 50V, 10%, X7R	TDK	C2012X7R1H104K
2	C14, C15	Capacitor, SMD, 1812, 22µF, 25V, 20%, X5R	TDK	C4532X5R1E226M
1	L1	Choke, SMD, 8mm, 15µH, 20%, 5.65A, Shielded	Sumida	CDRH127/LD-150NC
1	U1	IC, Battery Charger, 24 Ld QSOP, -10°C to +100°C	Intersil	ISL6251HAZ
1	Q2	MOSFET, N-CH, 8P, SOIC, 30V, 8.4A, 0.022Ω	Fairchild	FDS6612A
1	Q1	MOSFET, N-CH, 8P, SOIC, 30V, 10.8A, 0.011Ω	IR	IRF7811AV
1	Q3	MOSFET, P-CH, SOIC, 30V, 13A, 0.014Ω	Siliconix	SI4413DY
1	Q4	MOSFET, P-CH, SOIC, 30V, 6A, 0.033Ω	Siliconix	SI4835BDY
1	Q5	MOSFET, P-CH, 3P, SOT23, -30V, -0.9A, 0.5Ω	Fairchild	NDS352AP
1	D1	DIODE SCHOTTKY 40V 10A POWERDI5	Diodes Inc.	PDS1040-13
1	D2	SURFACE MOUNT SCHOTTKY BARRIER DIODE	Diodes Inc.	BAT54WT1
1	R2	Resistor, Shunt, SMD, 2010, 0.020Ω, 1W, 1%	IRC	LRC-LRF2010-01-R020-F
1	R1	Resistor, Shunt, SMD, 2010, 0.025Ω, 1W, 1%	IRC	LRC-LRF2010-01-R025-F
1	R13	Resistor, SMD, 0805, 18Ω, 0.125W, 5%	KOA	RK73B2AT180J
1	R12	Resistor, SMD, 0805, 2.2Ω, 0.125W, 5%	KOA	RK73B2AT2R2J
1	R15	Resistor, SMD, 0805, 4.7Ω, 0.125W, 5%	KOA	RK73B2AT4R7J
1	R14	Resistor, SMD, 0805, 10kΩ, 0.125W, 1%	KOA	RK73H2AT1002F
1	R11	Resistor, SMD, 0805, 7.87kΩ, 0.125W, 1%	KOA	RK73H2AT7871F
3	R3, R4, R8	Resistor, SMD, 0805, 100kΩ, 0.125W, 1%	KOA	RK73H2AT1003F
1	R20	Resistor, SMD, 0805, 33.2kΩ, 0.125W, 1%	KOA	RK73H2AT3322F
1	R16	Resistor, SMD, 0805, 0Ω, 2A, 50mΩ Max	KOA	RK73Z2AT
	1		1	1

R3 R4 R5 O^{d d d d} CELLS TP1 BATTERY P3 JP1 GND - S VDD 2 Z B CELLS R 2 9 DCINPULLUP ОРТ REV S/N C ISL625XEVAL JP 2 JP4 R30 НЗ ACPRN TP3 ACADAPTOR Η4 CSIN ADAPTOR SHUNT VREI T D J ΕN ENABLE JP1 ADJ VI <u>н</u> θ R 2 2 ഗ GND - S GND - S TP5 CSIP JP3 TP28 BATTERY 888 - INTER DCIN 05 C2C3 R 9 Ngr 1799 7 d C GND - S TP8 R 8 R10 BATTERY CHLIM TP10 CHARGER SHUNT ONDP GNDP BATTERY JP16 $\sum_{i=1}^{n}$ PHASE Q1VGS PHASE TP11 JP 8 CSOP \bigcirc C 7 C6 BATTERY CHARGER 1 UGATE LGATE Q4VDS \rightarrow JP15 P4 U1၅ 2 Q2VGS R27 ACLIM_ADJ ACLIM_ADJ ACLIM_ADJ CALL θ SYSTEM R14 BGATE 958 04VGS SYSTEM ADAPTOR Q3VDS CSIP DCSET TP12 PHASE Q1VDS SYSTEM OЧZ P<u>has</u>e SGATE 03VGS CSIP Q1VDS BATTERY Aclim Acset Do TP18 TP15 T DZ VCOMP TP16 JP10 Ρ1 VDDP TP23 РZ GND - S TP19 O SYSTEM ADAPTOR TP22 O TP25 GNDP JP5 Η1 AD, T P 2 0 ADJ_ GND_ TP2 R19 R20 R21 0 P T 5 JP6 0 ΟPΤ C12 R24

FIGURE 1. TOP SILK

AN1364 Rev 0.00 Oct 25, 2007

RENESAS



FIGURE 2. TOP LAYER

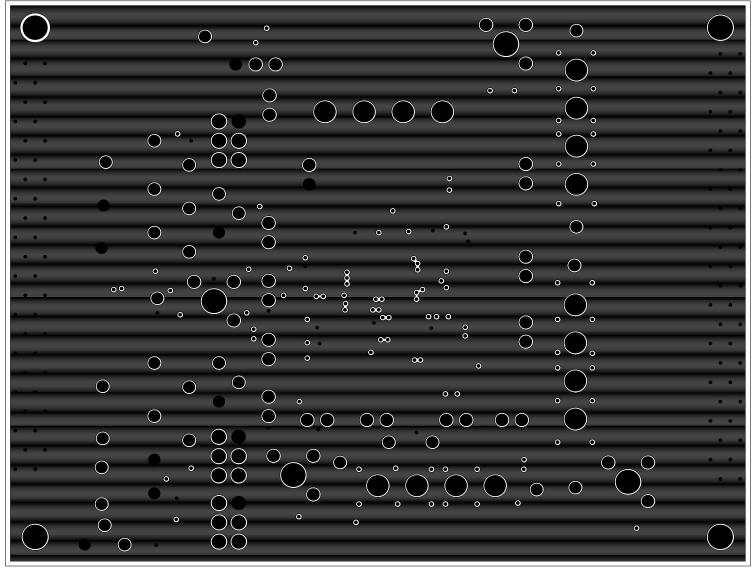


FIGURE 3. LAYER 2 GROUND (TOP VIEW)

AN1364 Rev 0.00 Oct 25, 2007

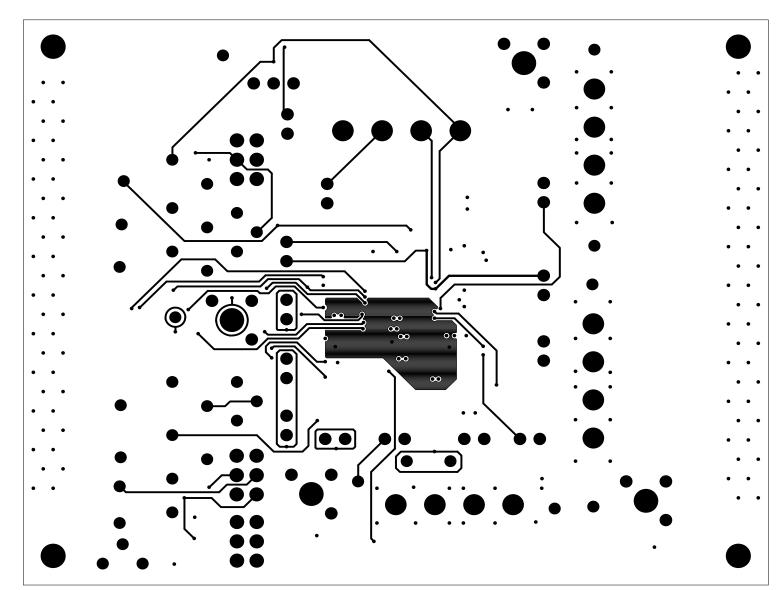


FIGURE 4. LAYER 3 SIGNAL (TOP VIEW)

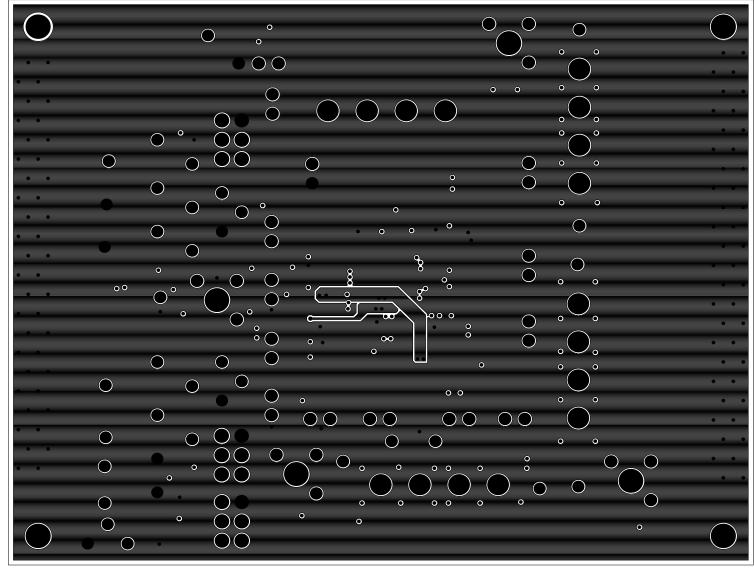


FIGURE 5. LAYER 4 GROUND (TOP VIEW)

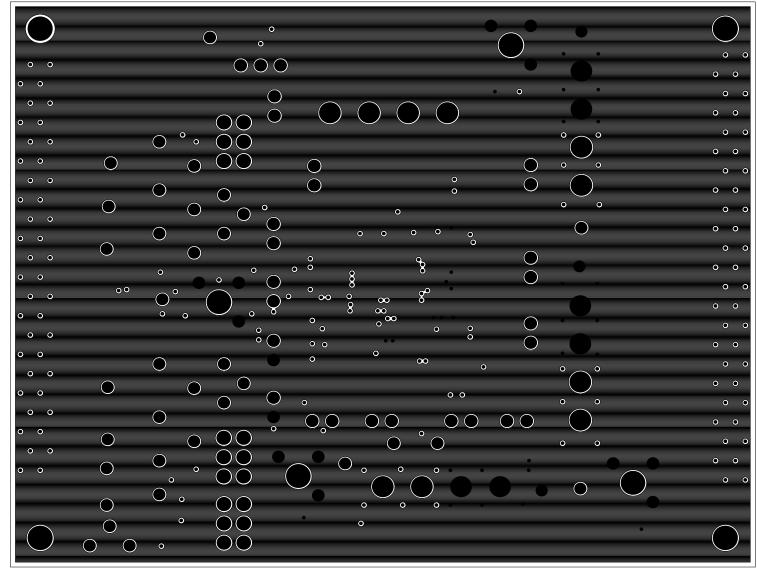


FIGURE 6. LAYER 5 GND (TOP VIEW)

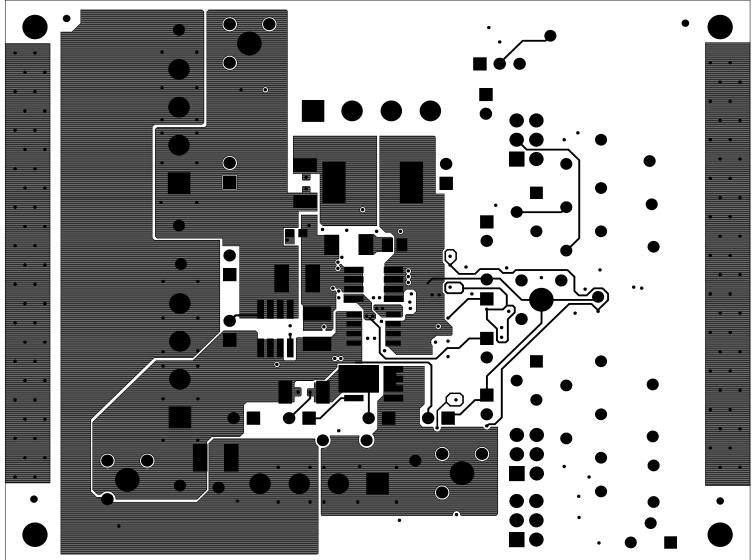


FIGURE 7. BOTTOM COPPER (BOTTOM VIEW)

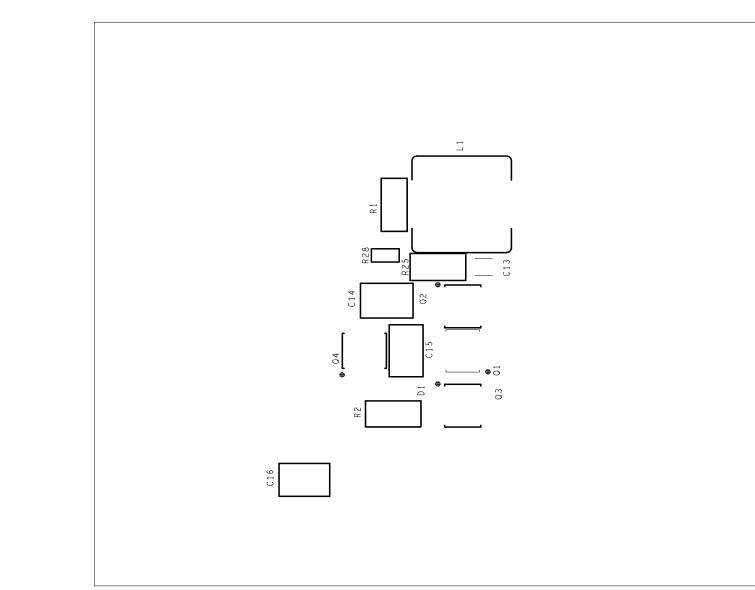


FIGURE 8. BOTTOM SILK SCREEN (BOTTOM VIEW)

RENESAS