RENESAS

ISL91302BIK

Dual/Single Output PMIC with 12-Bit Telemetry ADC for Industrial and Computing Applications

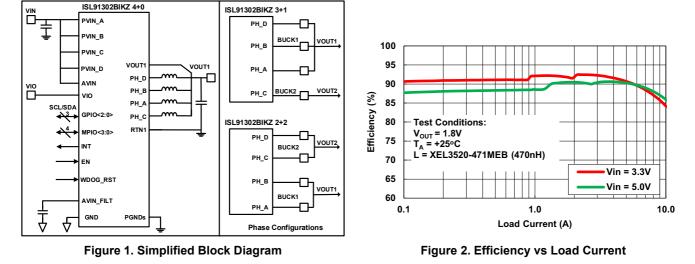
The <u>ISL91302BIK</u> is a highly efficient, dual or single output, synchronous multiphase buck switching regulator that can deliver up to 5A per phase maximum output current. The ISL91302BIK features four integrated power stages and two controllers. The ISL91302BIK can assign its power stages and controllers to two dual-phase outputs (2+2) or one three-phase and one-phase output (3+1) or one-phase output (4+0). This flexibility allows seamless design-in for a wide range of applications in which dual, triple, or quad-phase outputs are needed, such as CPU and GPU core power mobile applications.

ISL91302BIK integrates low ON-resistance MOSFETs at 2MHz switching frequency, allowing very small external inductors and capacitors to be used. With automatic Diode Emulation and Pulse Skipping modes under light-load conditions, this feature improves efficiency and maximizes battery life. The ISL91302BIK delivers a highly robust power solution through a controller based on the Renesas proprietary Rapid Robust Ripple Regulator (R5) technology, offering tight output accuracy and load regulation, ultra-fast transient response, seamless DCM/CCM transitions, and no required external compensation.

In addition to the standard interrupt, chip enable, and watchdog reset functions, the ISL91302BIK also features four MPIOs and two GPIOs that support SPI, I2C communication protocol, external signal telemetry with an internal ADC, Dynamic Voltage Scaling (DVS) with selectable slew rates, and various other pin mode functions.

Features

- Dual output 3+1 or 2+2, or single output 4-phase
- 2.7V to 5.5V supply voltage
- 5A per phase output current capability
- Small solution size
- + High efficiency (94% peak for 3.3V $V_{\text{IN}},\,$ 1.8V $V_{\text{OUT}},\,$ L = 220nH)
- Low I_Q in low power mode
- Proprietary control scheme reduces the output capacitor and supports fast load transients (such as 50A/µs per phase)
- Voltage, current, and temperature telemetry through integrated ADC plus auxiliary inputs
- ±0.7% system accuracy, remote voltage sensing
- I²C and SPI programmable output from 0.3V to 2.0V
- Independent Dynamic Voltage Scaling (DVS) for each output
- Soft-start and fault detection (UV, OV, OC, OT), short-circuit protection
- 4.7mmx 6.3mm 35 ball TFBGA with 0.8mm pin pitch


Applications

- Industrial controls and FPGAs
- · Computing servers and systems
- · Home gateways and applicances

Related Literature

For a full list of related documents, visit our website

<u>ISL91302BIK</u> product page

Contents

1.	Overview	. 3
1.1	Typical Application Circuits	. 3
1.2	Block Diagram	. 5
1.3	Ordering Information	. 6
1.4	Pin Configuration	. 7
1.5	Pin Descriptions	. 7
1.6	I/O Pin Configurations	. 8
2.	Specifications	10
2.1	Absolute Maximum Ratings	
2.2	Thermal Information	
2.3	Recommended Operation Conditions	
2.4	Analog Specifications	11
3.	Output Configurations	14
4.	Typical Operating Performance	17
5.	Applications Information.	20
5.1	Inductor Selection	20
5.2	Output Capacitor Selection	20
5.3	Input Capacitor Selection.	20
5.4	ADC Telemetry	21
5.5	Dynamic Voltage Scaling (DVS)	22
5.6	Configuring DVS Speed	24
5.7	Output Voltage Setting	24
5.8	Power Sequencing.	
5.9	Watchdog Time (WDOG_RST Pin)	
5.10) Interrupt Pin	27
6.	Protection Features (Faults)	
6.1	Over-Temperature Protection	
6.2	Overcurrent Protection Mode	
6.3	Overvoltage (OV)/Undervoltage (UV) Protection	28
7.	Serial Communication Interface	29
7.1	SPI Serial Interface	
7.2	I2C Interface	32
8.	Board Layout Recommendations	36
8.1	PCB Layout Summary	37
8.2	PCB Design for TFBGA Recommendations	38
9.	Register Address Map	39
10.	Register Description by Address	40
11.	Revision History	60
12.	Package Outline Drawing	61

1. Overview

1.1 Typical Application Circuits

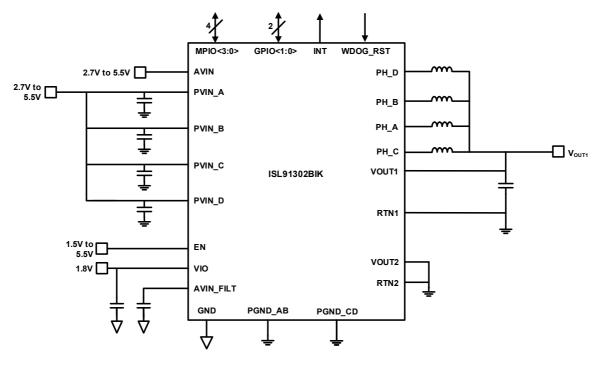


Figure 3. Typical Application 4-Phase Single Output

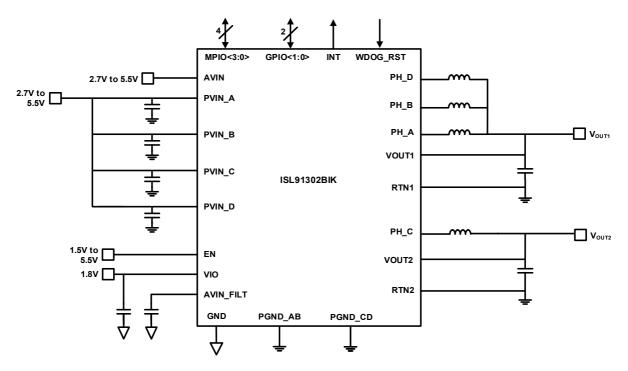


Figure 4. Typical Application Circuit: 3-Phase + 1-Phase

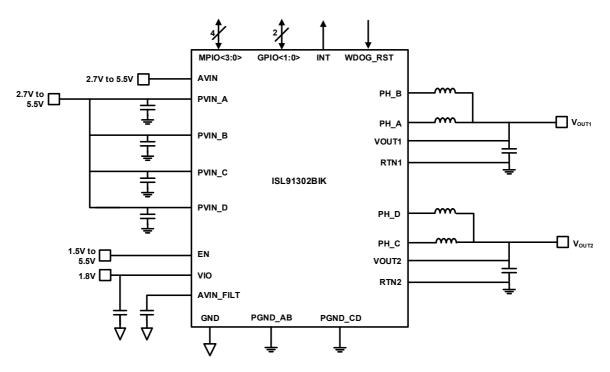


Figure 5. Typical Application Circuit: 2-Phase + 2-Phase

1.2 Block Diagram

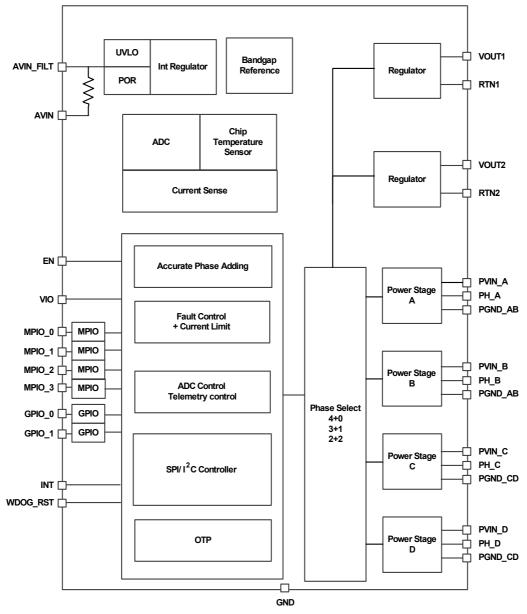


Figure 6. Block Diagram

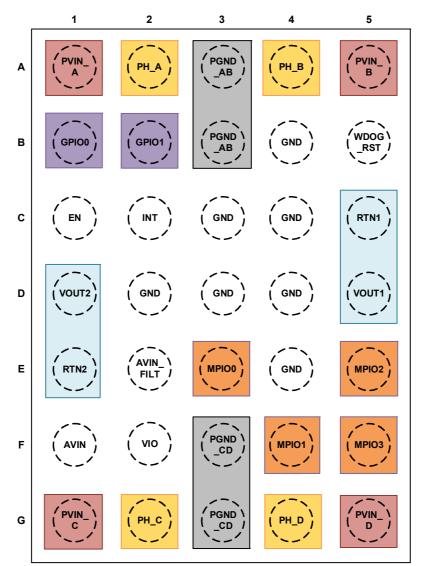
1.3 Ordering Information

Part Number (<u>Notes 1</u> , <u>3</u> , <u>4</u>)	Part Marking	Temp Range (°C)	Tape and Reel (Units) (<u>Note 2</u>)	Package (RoHS Compliant)	Pkg. Dwg. #			
ISL91302BIKZ-T	302BK	-40 to +85	3k	4.7mmx6.30mm, 35 ball TFBGA	V35.4.7x6.3			
ISL91302BIIK22-EVZ	2-phase + 2	2-phase + 2-phase evlauation board						
ISL91302BIIK31-EVZ	3-phase + 1	3-phase + 1-phase evlauation board						
ISL91302BIIK40-EVZ	4-phase sin	-phase single output evaluation board						

Notes:

- 1. For additional part options contact your local sales office.
- 2. See <u>TB347</u> for details about reel specifications.
- These Pb-free BGA packaged products employ special Pb-free material sets; molding compounds/die attach materials and SnAgCu e6 solder ball terminals, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Pb-free BGA packaged products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J-STD-020.
- 4. For Moisture Sensitivity Level (MSL), see the ISL91302BIK device page. For more information about MSL, see TB363.

Table 1. Key Differences Between Family of Parts


Part Number	Pin Configuration	Pitch	Output Configuration	Maximum Load per Phase
ISL91302BIK	35 Ball 5x7 TFBGA	0.8mm	Single Output (4+0 Phase)	5A
	35 Ball 5x7 TFBGA	0.8mm	Dual Output (3+1 Phase)	5A
	35 Ball 5x7 TFBGA	0.8mm	Dual Output (2+2 Phase)	5A
ISL91211AIK	35 Ball 5x7 TFBGA	0.8mm	Triple Output (2+1+1 Phase)	5A
ISL91211BIK	35 Ball 5x7 TFBGA	0.8mm	Quad Output (1+1+1+1 Phase)	5A

1.4 Pin Configuration

JEDEC Standard:

Balls Down, A1 Top Left Corner

35 Ball TFBGA Top View

1.5 Pin Descriptions

Pin Number	Pin Name	Туре	Description
A1	PVIN_A	Input	Power supply for Power Stage A.
A2	PH_A	Output	Switching node for Power Stage A.
A3, B3	PGND_AB	Input	Ground connection for Power Stage A and B
A4	PH_B	Output	Switching node for Power Stage B.
A5	PVIN_B	Input	Power supply for Power Stage B.
B1	GPIO0	Input/Output	General purpose I/O pin, see <u>Table 2</u> .
B2	GPIO1		
B4, C3, C4, D2, D3, D4, E4	GND	Input	Analog chip ground. Ensure that pin D4 has a low impedance connection to the internal ground layer.
B5	WDOG_RST	Input	Digital input, resets the bucks to default output voltage.

Pin Number	Pin Name	Туре	Description
C1	EN	Input	Master chip enable input, NMOS logic threshold.
C2	INT	Output	Interrupt line.
C5	RTN1	Input	Remote ground voltage sense for Buck #1.
D1	VOUT2	Input	Remote output voltage sense for Buck #2.
D5	VOUT1	Input	Remote output voltage sense for Buck #1.
E1	RTN2	Input	Remote ground voltage sense for Buck #2.
E2	AVIN_FILT	Output	Filtered analog supply voltage, 2.7 to 5.5V. Place a decoupling capacitor close to the IC.
E3	MPIO0	Input/Output	Multipurpose I/O, see <u>Table 2</u> .
E5	MPIO2		
F4	MPIO1		
F5	MPIO3		
F1	AVIN	Input	Analog supply voltage, 2.7V to 5.5V.
F2	VIO	Input	I/O supply voltage for digital communications. Normally connected to 1.8V supply.
F3, G3	PGND_CD	Input	Ground connection for Power Stage C and D
G1	PVIN_C	Input	Power supply connection for Power Stage C.
G2	PH_C	Output	Switching node for Power Stage C.
G4	PH_D	Output	Switching node for Power Stage D.
G5	PVIN_D	Input	Power supply connection for Power Stage D.

1.6 I/O Pin Configurations

The ISL91302BIK features two general purpose I/O (GPIO) pins for I²C and other functions, along with four multipurpose I/O (MIO) pins. These pins perform different functions depending on the IO_PINMODE setting. The default factory setting for IO_PINMODE is 0x0. For features requiring IO_PINMODE to be different than the default value, contact Renesas <u>support</u> for factory OTP programming.

Table 2.	I/O Pin Mode
----------	--------------

IO_PINMODE	MPIO0	MPIO1	MPIO2	MPIO3	GPIO0	GPIO1	Description
0x0	SCK	SS_B	MOSI	MISO	SCL	SDA	I ² C/SPI both available
0x1	SCK	SS_B	MOSI	MISO	EN_A	EN_B	SPI mode with hardware enables for Bucks 1-2
0x3	SCK	SS_B	MOSI	MISO	DVS1_0	DVS2_0	SPI with hardware DVS pins
0x4	DVS_PIN1	DVS_PIN0	PGOOD1	PGOOD2	SCL	SDA	I ² C with global DVS mode with PGOOD1 and PGOOD2
0x5	BUCK1_DVS0	BUCK1_DVS1	BUCK2_DVS0	BUCK2_DVS1	SCL	SDA	I ² C with full pin controlled DVS for Buck1 and Buck2
0x6	BUCK1_DVS0	BUCK2_DVS0	PGOOD1	PGOOD2	SCL	SDA	I ² C with DVS and PGOOD for Buck1 and Buck2
0xD	ADC_IN0	ADC_IN1	PGOOD1	PGOOD2	SCL	SDA	I ² C with ADC input and PGOOD1 and PGOOD2
0xE	ADC_IN0	ADC_IN1	DVS_PIN1	DVS_PIN0	SCL	SDA	I ² C with ADC input and global DVS

Note: Pinmodes 0x7 through 0xC and 0xF are reserved.

Table 3.Pin Mode Descriptions

Name	Definition
SCK	SPI clock.
SS_B	SPI slave select (must be pulled to VIO when using I ² C).
MOSI	SPI master out slave in.
MISO	SPI master in slave out.
SCL	I ² C clock.
SDA	I ² C data.
PGOOD1, PGOOD2	Power-good output pins. PGOOD pins for BUCK1 and BUCK2
EN_A, EN_B	Buck enable input pins. Two buck enable input pins. A single buck enable pin can enable/disable up to two bucks. Enable/disable on a buck can be controlled from one enable pin (EN_A or EN_B)
DVS_PIN1, DVS_PIN0	Global DVS logic pins which references a look-up table to allow complete DVS control.
BUCK1_DVS0, BUCK1_DVS1	DVS input logic pins for Buck1.
BUCK2_DVS0, BUCK2_DVS1	DVS input logic pins for Buck2.
ADC_IN0, ADC_IN1	Input pins for auxiliary ADC.

2. Specifications

2.1 Absolute Maximum Ratings

Parameter	Minimum	Maximum	Unit	
PVIN and AVIN Pins to PGND	-0.3	+6	V	
VOUT Pin BUCKx_VOUTFBDIV = 0x0	-0.3	+2.0	V	
VOUT Pin BUCKx_VOUTFBDIV = 0x1	-0.3	+2.4	V	
VOUT Pin BUCKx_VOUTFBDIV = 0x2	-0.3	+3.0	V	
PH to PGND	-0.3	+0.3 + PVIN	V	
VIO EN Pins to GND	-0.3	+0.3 + AVIN	V	
RTN, GND to PGND Pins	-0.3	+0.3	V	
INT, WDOG_RST, MPIO, GPIO Pins to GND	-0.3	+0.3 + VIO	V	
ESD Ratings (<u>Note 5</u>)	١	/alue	Unit	
Human Body Model (Tested per JS-001-2017)		2		
Charged Device Model (Tested per JS-002-2014)		750		
Latch-Up (Tested per JESD78E; Class 2, Level A)		100	mA	

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions can adversely impact product reliability and result in failures not covered by warranty.

Note:

5. ESD ratings apply to external pins only.

2.2 Thermal Information

Thermal Resistance (Typical)	θ _{JA} (°C/W)	θ _{JC} (°C/W)
35 Ball TFBGA Package (<u>Notes 6, 7</u>)	47	3

Notes:

6. θ_{JA} is measured in free air with the component mounted on a high-effective thermal conductivity test board with direct attach features. See <u>TB379</u>.

7. For $\theta_{\text{JC}},$ the case temperature location is taken at the package top center.

Parameter	Minimum	Maximum	Unit
Maximum Junction Temperature		+150	°C
Storage Temperature Range	-65	+150	°C
Pb-Free Reflow Profile		See <u>TB493</u>	

2.3 Recommended Operation Conditions

Parameter	Minimum	Maximum	Unit	
Junction Temperature	-40	+125	°C	
Supply Voltage				
AVIN to GND	2.7	5.5	V	
PVIN to PGND	2.7	5.5	V	
VIO Voltage (VIO to GND)	1.7	AVIN	V	
INT, WDOG_RST, MPIO, GPIO Pins to GND	0	VIO	V	

2.4 Analog Specifications

AVIN/PVIN = 3.7V, V_{OUT} = 1V, L = 220nH, Frequency = 2MHz, VIO = 1.8V, T_A = +25°C. Boldface limits apply across the operating junction temperature range, -40°C to +85°C unless otherwise noted.

Parameter	Symbol	Test Conditions	Min (<u>Note 8</u>)	Тур	Max (<u>Note 8</u>)	Unit
Input Supply						
Supply Voltage	AVIN		2.7		5.5	V
Supply Voltage	PVIN		2.7		5.5	V
AVIN Supply Current	ا _م	EN = 0V		0.1	1	μA
AVIN + PVIN Supply Current EN = 0V		EN = 0V		<1	6	μA
AVIN + PVIN Supply Current		BUCK1_EN[0] = 0x0 and BUCK2_EN[0] = 0x0		22		μA
EN = AVIN = PVINx = 3.7V		4+0 OTP configuration, not switching BUCK1_EN[0] = 0x1 DCM operation BUCK2_EN[0] = 0x0		75		μA
		4+0 OTP configuration, not switching BUCK1_EN[0] = 0x1 1PH CCM operation BUCK2_EN[0] = 0x0		635		μA
		4+0 OTP configuration, not switching BUCK1_EN[0] = 0x1 4PH CCM operation BUCK2_EN[0] = 0x0		765		μA
		2+2 OTP configuration, not switching BUCK1_EN[0] = 0x0 BUCK2_EN[0] = 0x1 DCM operation		85		μA
		2+2 OTP configuration, not switching BUCK1_EN[0] = 0x0 BUCK2_EN[0] = 0x1 1PH CCM operation		485		μA
		2+2 OTP configuration, not switching BUCK1_EN[0] = 0x0 BUCK2_EN[0] = 0x1 2PH CCM operation		560		μA
UVLO Rising Threshold	V _{UVLOR}	Rising	2.52	2.60	2.67	V
UVLO Falling Threshold	V _{UVLOF}	Falling	2.28	2.34	2.39	V
Buck Regulation		·				
Buck Output Voltage Range	V _{OUT}	BUCKx_VOUTFBDIV[1:0] = 0x00	0.300		1.2	V
(Each Output)		BUCKx_VOUTFBDIV[1:0] = 0x01	0.375		1.5	V
		BUCKx_VOUTFBDIV[1:0] = 0x02	0.500		2.0	V
Output Voltage Step Size	V _{STEP}	10-bit control, BUCKx_VOUTFBDIV[1:0] = 0x00		1.2		mV
		10-bit control, BUCKx_VOUTFBDIV[1:0] = 0x01		1.5		mV
		10-bit control, BUCKx_VOUTFBDIV[1:0] = 0x02		2.0		mV
Output Voltage Accuracy	V _{ACC}	CCM, V _{OUT} > 0.6V	-0.3		0.3	%
(<u>Note 9</u>)		CCM, V _{OUT} > 0.6V T _A = -10°C to +85°C	-0.7		0.7	%
		CCM, V _{OUT} < 0.6V	-4		4	mV
		CCM, V _{OUT} < 0.6V T _A = -10°C to +85°C	-5.5		5.5	mV
Current Matching	IMATCH	I _{OUT} = 5A per phase		10		%
Dynamic Response						
Dynamic Voltage Scaling (Output Slew Rate)	V _{DVS}	2.7V < V _{IN} < 5.5V: factory default = 3mV/µs	-15		15	%

$AVIN/PVIN = 3.7V, V_{OUT} = 1V, L = 220nH, Frequency = 2MHz, VIO = 1.8V, T_A = +25^{\circ}C.$ Boldface limits apply across the operating junction temperature range, -40°C to +85°C unless otherwise noted. (Continued)

Parameter	Symbol	Test Conditions	Min (<u>Note 8</u>)	Тур	Max (<u>Note 8</u>)	Unit
Boot-Up Time	V _{BT}	Delay from when PVIN, AVIN, and EN are asserted to when the first buck's reference starts ramping. This time includes internal reference startup, OTP load and buck controller calibration time. BUCKx_EN_DELAY = 0x00		1.4		ms
Frequency						
CCM Frequency Tolerance	$f_{SW_{TOL}}$	Factory default = 2MHz	-15		15	%
Power Stage						
Buck Output Current (Each Phase)		2.7V < V _{IN} < 5.5V			5	A
High-Side Switch ON-Resistance	HS r _{DS(ON)}	Conditions: PVIN = 3.7V, Current = 300mA		32		mΩ
Low-Side Switch ON-Resistance	LS r _{DS(ON)}	Conditions: PVIN = 3.7V, Current = 300mA		17.5		mΩ
Protection						
HSD Current Limit (WOC)	I _{LIMIT}	2.7V < V _{IN} < 5.5V Phase Count = 2 or more; WOC = 11.35A	-10		10	%
		2.7V < V _{IN} < 5.5V Phase Count = 1; WOC = 8.38A	-10		10	
Thermal Shutdown Accuracy	termal Shutdown Accuracy T_{SPS} 2.7V < V_{IN} < 5.5V, factory default = +140°C		-10		10	%
Thermal Shutdown Hysteresis	ermal Shutdown Hysteresis T_{SPS_HYS} 2.7V < V_{IN} < 5.5V, factory default = +60°C		-10		10	%
Thermal Warning Alert	ermal Warning Alert T _{ALERT} 2.7V < V _{IN} < 5.5V, factory default = +85°C		-10		10	%
Thermal Warning Hysteresis	T _{ALERT_HYS}	2.7V < V _{IN} < 5.5V, factory default = +12°C	-10		10	%
Output OVP Threshold Accuracy	V _{OVP}	Threshold: +250mV	-35		40	mV
Output UVP Threshold Accuracy	V _{UVP}	Threshold: -250mV	-35		35	mV
ADC						
Output Current Sense Offset	I _{SENSE_OFFSET}		-75		75	mA
Output Current Sense Accuracy	I _{SENSE_ADC}	I _{LOAD} = 500mA (minus offset)	-10		10	%
		$3.0V < V_{IN} < 5.0V I_{LOAD} = 500mA$ (minus offset)	-15		15	%
MPIO/GPIO Operating Condition	S					
Allowable Range of Supply for Operation	VIO		1.70	1.80	AVIN	V
Chip Enable Logic Threshold Lev	/el					
Low-Level Input Voltage	V _{IL}				0.5	V
High-Level Input Voltage	V _{IH}		1.35			V
Serial Interfaces						
I ² C Frequency Capability	f _{I2C}				3.4	MHz
SPI Frequency Capability	f _{SPI}			26		MHz
MPIO/GPIO Logic Threshold Lev	vels		1		L	1
Low Level Input Voltage	V _{IL}				0.25 * VIO	V
High Level Input Voltage	V _{IH}		0.75 * VIO			V
Hysteresis on Input	V _{HYS}		0.1 * VIO			V

 $AVIN/PVIN = 3.7V, V_{OUT} = 1V, L = 220nH$, Frequency = 2MHz, $VIO = 1.8V, T_A = +25^{\circ}C$. Boldface limits apply across the operating junction temperature range, -40°C to +85°C unless otherwise noted. (Continued)

Parameter	Symbol	Test Conditions	Min (<u>Note 8</u>)	Тур	Max (<u>Note 8</u>)	Unit
Low Level Output	V _{OL}	1mA			0.4	V
High Level Output	V _{OH}	1mA	VIO - 0.4			V

Note:

8. Compliance to datasheet limits is assured by one or more methods: production test, characterization, and/or design.

9. V_{OUT} feedback divider ratio equals 1 (BUCKx_VOUTFBDIV[1:0] = 0x00).

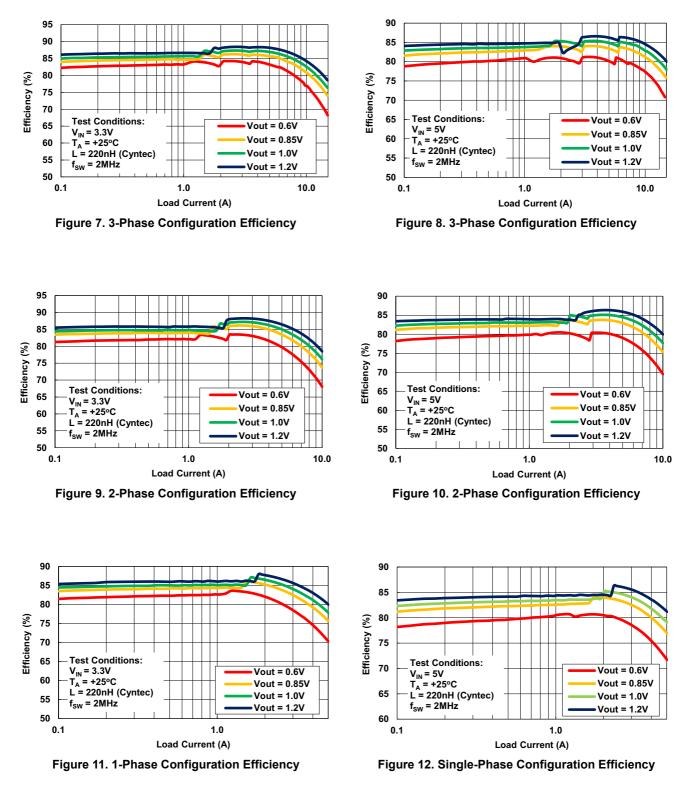
10. As per <u>"Thermal Information" on page 10</u>, operating beyond thermal limits can cause permanent damage.

3. Output Configurations

Table 4. Output Configurations

Output Configuration	Power Stage Assignment				Diagram		
4-Phase	4-Phase: Buck #1 (VOUT1)			4+(0 Configuration		
Connect VOUT2 and RTN2 to PGND Plane	• Ph1: PH_A • Ph2: PH_B • Ph3: PH_D • Ph4: PH_C		(pvin_a)		(PGND_) (A_B	(-PH_B)	(PVIN_B)
			(GPI00)	(GPI01)	(PGND_) (A_B	(GND)	(WDOG_) RST
			()	(INT)		(GND)	(RTN1
			(vout2)	(GND)		(GND)	(vout1 +
		<u> </u>	(RTN2)	(AVIN_FI)	(MPIO0)	(GND)	(MPIO2)
			(AVIN)	(vio)	(PGND_) (C_D	(MPIO1)	(MPIO3)
			(PVIN_C)	(PH_C)	(PGND_) (C_D)	/ - \ (PH_D)	(PVIN_D)
			PH1	PH4 S		PH3	

Output Configuration	Power Stage Assignment	Diagram	
3-Phase + 1-Phase	3+1 Configuration: • 3-phase: Buck #1	3+1 Configuration	
	(VOUT1) Ph1: PH_A Ph2: PH_B Ph3: PH_D • 1-phase: Buck #2	PH1 PH3 PH2 RTN1	
	(V _{OUT2}) Ph1: PH_C	$(PVIN_A) (PH_A) (PH_B) (PVIN_B)$	
		$\begin{pmatrix} GPIO0 \end{pmatrix} \begin{pmatrix} GPIO1 \end{pmatrix} \begin{pmatrix} PGND_{-} \\ A_{-}B \end{pmatrix} \begin{pmatrix} GND \end{pmatrix} \begin{pmatrix} WDOG_{-} \\ RST \end{pmatrix}$	
		(EN) (INT) (GND) (GND) (RTN1+	
		(VOUT2) (GND) (GND) (VOUT1)	
		(RTN2) (AVIN_FI) LT (MPIO0) (GND) (MPIO2)	
		$\begin{pmatrix} (AVIN) \\ (VIO) \\ (VIO) \\ (VIO) \\ (C_D) \\ (MPIO1) \\ (MPIO3) \\ ($	
		$(PVIN_C)$ (PH_C) (PH_C) (PH_D) $(PVIN_D)$ $(PVIN_D)$ $(PVIN_D)$	
		VOUT2	


Table 4. Output Configurations (Continued)

Output Configuration	Power Stage Assignment	Diagram	
2-Phase + 2-Phase	2+2 Configuration • 2-phase: Buck #1	2+2 Configuration	
	(VOUT1) Ph1: PH_A Ph2: PH_B • 2-phase: Buck #2 (V _{OUT2}) Ph1: PH_C	PH1 PH2 PH2	⁻ N1
	Ph2: PH_D	$(PVIN_A] (PH_A) (PGND_) (PH_B) (PVIN_A] (PH_B)$	/п_в)
		(EN) (INT) (GND) (GND) (R	TN1
		(VOUT2+) (GND) (GND) (GND) (VV	ЭUT1)
		(AVIN_FI) (MPIO0) (GND) (M	PIO2]
		$\begin{pmatrix} AVIN \\ - & - & - \end{pmatrix} \begin{pmatrix} VIO \\ - & - & - \end{pmatrix} \begin{pmatrix} PGND \\ C_D \\ - & - \end{pmatrix} \begin{pmatrix} MPIO1 \\ - & - & - \end{pmatrix} \begin{pmatrix} MPIO1 \\ - & - & - \end{pmatrix} \begin{pmatrix} MPIO1 \\ - & - & - & - \end{pmatrix}$	PIO3]
		(PVIN_C) (PVIN_C) (PH_C) (PH_C) (PH_C) (PH_D) (PLC) (PH_D) (PLC) (PLC) (PH_C) (PLC) (PLC)	
		PH1 PH2	

RENESAS

4. Typical Operating Performance

Unless otherwise noted, operating conditions are: V_{IN} = 3.8V, V_{OUT} = 1.1V, VIO and Enable = 1.8V, T_A = +25°C, f_{SW} = 2MHz, 2-phase operation, L = 220nH, C_{OUT} = 5x22µF.

Unless otherwise noted, operating conditions are: V_{IN} = 3.8V, V_{OUT} = 1.1V, VIO and Enable = 1.8V, T_A = +25°C, f_{SW} = 2MHz, 2-phase operation, L = 220nH, C_{OUT} = 5x22µF. (Continued)

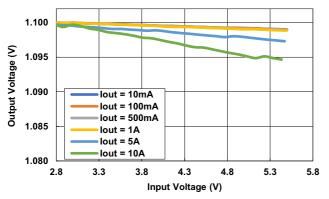


Figure 13. 2-Phase V_{OUT} vs V_{IN} (10mA to 10A)

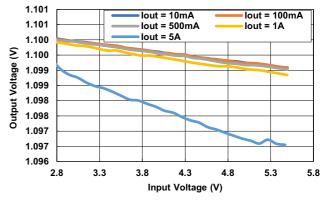


Figure 14. Single Phase V_{OUT} vs V_{IN} (10mA to 5A)

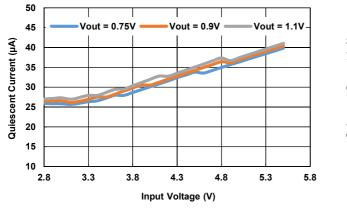


Figure 15. PVIN Quiescent Current (PFM Mode)

110 Vout = 0.75V Vout = 0.9V Vout = 1.1V 105 Quiescent Current (µA) 100 95 90 85 80 3.3 3.8 4.3 4.8 5.3 5.8 2.8 Input Voltage (V)

Figure 16. PVIN Quiescent Current (PWM Mode)

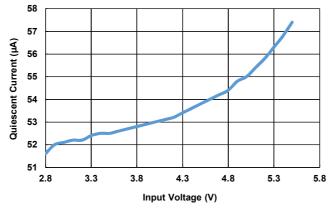
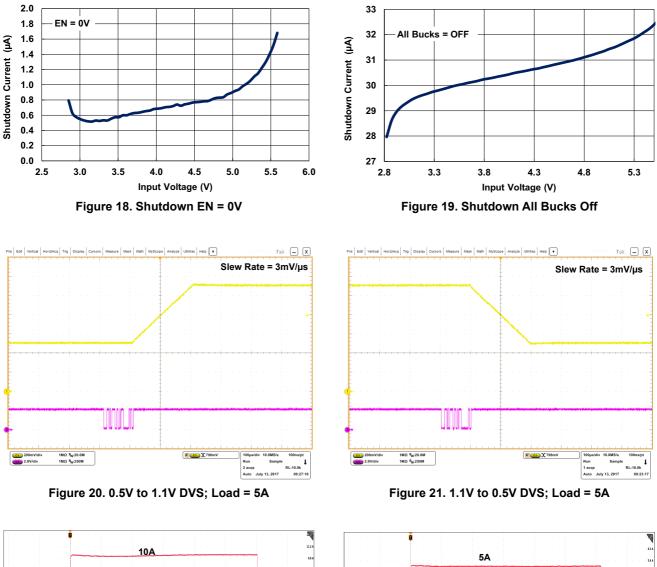



Figure 17. PVIN Quiescent Current (No Switching)

Unless otherwise noted, operating conditions are: V_{IN} = 3.8V, V_{OUT} = 1.1V, VIO and Enable = 1.8V, T_A = +25°C, f_{SW} = 2MHz, 2-phase operation, L = 220nH, C_{OUT} = 5x22µF. (Continued)

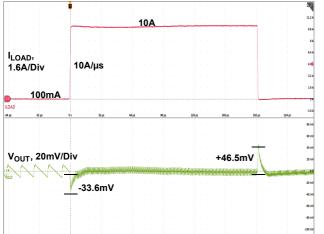


Figure 22. Dual-Phase Transient

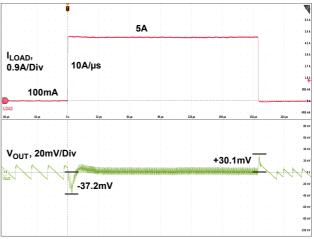


Figure 23. Single-Phase Transient

5. Applications Information

5.1 Inductor Selection

The ISL91302BIK is a high efficiency, high performance, dual output multiphase/single-phase synchronous buck converter that can deliver up to 5A of peak current per phase at 0.3V to 2.0V regulated voltage. The ISL91302BIK operates as one quad-phase output (4+0), one three-phase and one single-phase output (3+1), or two dual-phase outputs (2+2) at a switching frequency fixed at 2MHz. Switching MOSFETs are fully integrated and no additional external MOSFETs or diodes are needed. Each phase requires an equal external inductor, that can deliver up to the maximum load current divided by the number of phases used.

Manufacturer	Part Number	L x W x H (mm)	Value (nH)	DCR mΩ (Typ)	I _{SAT} (Тур)
Cyntec	HMLB25201T	2.5x2.0x1.0	220	9.4	7.0
Taiyo Yuden	MAKK2520HR22M	2.5x2.0x1.0	220	16	8.5
Cyntec	HTTN2016T	2.0x1.6x1.0	220	13	7.2
Murata	DFE2016E	2.0x1.6x1.0	240	16	7.0
Murata	DFE252012F	2.5x2.0x1.2	470	23	6.7

Table 5. Recommended Output Inductors

5.2 Output Capacitor Selection

Output capacitors are needed to provide filtering of square voltage at the phase node into a regulated output voltage. The amount of output capacitance required is based on the parameters of the maximum load step, the slew rate of the load step, and the maximum allowable voltage regulation tolerance during the transient. The amount of ripple voltage at the output capacitor is also a design constraint; the total peak-to-peak ripple voltages produced from the output capacitor is equal to its ESR multiplied by the worst case inductor ripple current.

Make sure to select X7R or X5R type capacitors and consider for DC bias effects. A wide range of output capacitor values can be used.

Table 6.	Recommended Output Capacitors
----------	--------------------------------------

Manufacturer	Part Number	Case Size	Value (µF)	Voltage Rating (V)
ТДК	C1608X5R1A226M080AC	0603	22	10
TDK	C0510X6S0G105M030AC	0204	1	4
Murata	LLD154R60G435ME01	0402	4.3	4
Murata	LLL1U4R60G435ME22	0204	4.3	4

5.3 Input Capacitor Selection

Ceramic input capacitors source the AC component of the input current flowing into the high-side MOSFETs. Place them as close to the IC as possible. A 10 μ F local decoupling capacitor is recommended for each phase PVIN. If long wires are used to bring power to the IC, use additional Bulk capacitors between C_{IN} and the battery/power supply to dampen ringing and overshoot at start-up.

Internal analog reference circuits also require additional filtering at the AVIN_FLT pin.

Manufacturer	Part Number	Case Size	Value (µF)	Volt (V)	Input
TDK Corp	CGB2A1X5R1A105M033BC	0402	1	10	AVIN
Kemet	C0402C104K8RACTU	0402	0.1	10	AVIN
Samsung	CL05A10MP5NUNC	0402	10	10	PVIN
Murata	GRM188R61A106MAAL	0603	10	10	PVIN

5.4 ADC Telemetry

The ISL91302BIK has an internal SAR ADC that monitors and reports the die temperature, individual phase currents, total buck output current, output voltage, and input voltage. Two additional channels provide internal or external monitoring. Using these channels requires OTP programming from the factory. The ADC is OTP programmed to be turned off during Discontinuous Conduction mode to save current and improve light-load efficiency.

Reading the ADC output is accomplished by reading the respective MSB (8-bit) and LSB (8-bit). <u>Table 8</u> shows which registers hold the ADC data.

Monitor	Register Name	Register Address MSB	Register Address LSB
Temperature	SAMPLE0	0x16	0x17
Buck1 Ph1 Current	SAMPLE1PH1	0x18	0x19
Buck1 Ph2 Current	SAMPLE1PH2	0x1A	0x1B
Buck1 Ph3 Current	SAMPLE1PH3	0x1C	0x1D
Buck1 Ph4 Current	SAMPLE1PH4	0x1E	0x1F
Buck1 Total Current	SAMPLE1T	0x20	0x21
PVIN for Buck1	SAMPLE2	0x22	0x23
VOUT1	SAMPLE3	0x24	0x25
Buck2 Ph1 Current	SAMPLE4PH1	0x26	0x27
Buck2 Ph2 Current	SAMPLE4PH2	0x28	0x29
Buck2 Total Current	SAMPLE4T	0x2A	0x2B
PVIN for Buck2	SAMPLE5	0x2C	0x2D
VOUT2	SAMPLE6	0x2E	0x2F
AUX INPUT0	AUX0	0x30	0x31
AUX INPUT1	AUX1	0x32	0x33

Table 8. ADC Register Addresses

The ADC 16-bit output is a signed format in which the LSB is 0.25 when referring to temperature, voltage, or individual phase current. The total buck current measurement has an LSB of 1. Each channel is filtered through an internally programmable IIR filter. AUX input 0 and AUX input 1 allow the user to read the external values with the ISL91302BIK ADC.

Table 9. ADC Result Registers

Units	Phase Current (mA)	Total Buck Current (mA)	Temperature (°C)	Voltage (mV)
0x0000	0	0	0	0
0x0001	0.25	1	0.25	0.25
0x0002	0.5	2	0.5	0.5
0x0003	0.75	3	0.75	0.75
0x0004	1	4	1	1
0x0010	4	16	4	4
0x0100	64	256	64	64
0x7FFF	8191.75	32767	8191.75	8191.75
0x8000	-8192	-32768	-8192	-8192

Units	Phase Current (mA)	Total Buck Current (mA)	Temperature (°C)	Voltage (mV)
0x8001	-8191.75	-32767	-8191.75	-8191.75
0xFFFF	-0.25	-1	-0.25	-0.25

Table 9. ADC Result Registers (Continued)

5.5 Dynamic Voltage Scaling (DVS)

The ISL91302BIK has several options to achieve DVS. Each buck controller has four independently programmable voltage settings to set the output voltage. The settings are DVS0, DVS1, DVS2, and DVS3. Changing the selected DVS number selects the corresponding output voltage. The two methods to select the DVS are:

Method 1) - Use internal registers to select DVS by writing to the BUCKx_DVSSELECT[1:0] bits in the BUCKx_DVSSEL register for each respective buck using SPI or I^2C .

To use this method, the BUCKx_DVSCTRL[0] bit has to be set to 0x0 for the corresponding buck. The BUCKxDVSSELECT[1:0] setting allows the user to switch between the four different DVS settings, each of which corresponds to a set of DVS registers holding the DVS information.

For example, DVS0 correponds to BUCKx_DVS0VOUT92[7:0] and BUCKx_DVS0VOUT10[1:0]. The two register values combined represent the complete 10-bit DAC code for DVS0.

Table 10. DVS Method Selection

BUCKx_DVSCTRL[0]			
0x0	Use BUCKx_DVSSELECT[1:0] to select active DVS configuration		
0x1	Use DVS pin(s) to control DVS selection		

Table 11. DVS Pointers

BUCKx_DVSSELECT[1:0]	Active DVS for BUCKx
0x0	DVS0
0x1	DVS1
0x2	DVS2
0x3	DVS3

Each output voltage is set writing a 10-bit word to DVS Configuration 1 (BUCKx_DVS0CFG1 register) and DVS Configuration 0 (BUCKx_DVS0CFG0 register) in each buck. Configuration 1 holds the eight most significant bits and Configuration 0 holds the last two bits of the 10-bit word. The output voltage does not change until the LSB register has been written. Table 12 shows the relationship between the DVS word and V_{OUT}.

Table 12. 10-Bit DVS Code to Voltage Translation

FBDIV	1.0	0.8	0.6
DAC [9:0]	V _{OUT} (V)	V _{OUT} (V)	V _{OUT} (V)
0x000	0.0000	0.0000	0.0000
0x001	0.0012	0.0015	0.0020
0x200	0.6144	0.768	1.024
0x201	0.6156	0.7695	1.026
0x3E8	1.2	1.5	2.0

Method 2) - Using GPIO/MPIO pins to achieve DVS, there are five variations depending on the IO_PINMODE register setting. See <u>Table 2</u>.

NOTE: To use DVS by GPIO/MPIO pins requires IO_PINMODE to be OTP programmed before a start-up boot sequence is initiated. On-the-fly programming is not recommended for the following configurations.

(i) IO_PINMODE = 0x3: SPI with two Independent Buck DVS pins

MPIO0	MPIO1	MPIO2	MPIO3	GPIO0	GPIO1
SCK	SS_B	MOSI	MISO	DVS1_0	DVS2_0

BUCKx_DVSCTRL[0] should be OTP programmed high before the start-up sequence. The active DVS follows the DVSx_0 pin logic for the respective buck. See <u>Table 13</u> for more information.

Table 13. Single DVS Pin Logic

Function			
DVS1_0	Active DVS for BUCK1		
0	DVS0		
1	DVS1		
DVS2_0	Active DVS for BUCK2		
0	DVS0		
1	DVS1		

(ii) IO_PINMODE = 0x4: I²C with Global DVS and PGOOD pins

MPIO0	MPIO1	MPIO2	MPIO3	GPIO0	GPIO1
DVS_PIN1	DVS_PIN0	PGOOD1	PGOOD2	SCL	SDA

BUCKx_DVSPIN_CTRL[1:0] bits in BUCKx_DVSCFG register in combination with the DVS_PIN1 and DVS_PIN2 sets the active DVS for the respective BUCK. See <u>Table 14</u> for more information. BUCKx_DVSCTRL[0] should be OTP programmed high before the start-up sequence.

Table 14. Global DVS Pin Logic

BUCKx_DVSPIN_CTRL[1:0]	DVS_PIN1	DVS_PIN0	Active DVS
0x0	Х	X	DVS0
0x1	Х	0	DVS0
	Х	1	DVS1
0x2	0	X	DVS0
	1	X	DVS2
0x3	0	0	DVS0
	0	1	DVS1
	1	0	DVS2
	1	1	DVS3

Note: The 'X' indicates that either a 0 or 1 is acceptable.

(iii) **IO_PINMODE = 0x5**: I²C with 2 DVS pins for Buck1 and 2 DVS pins for Buck2

MPIO0	MPIO1	MPIO2	MPIO3	GPIO0	GPIO1
DVS1_0	DVS1_1	DVS2_0	DVS2_1	SCL	SDA

The active DVS is selected based off the combined $DVSx_1$ and $DVSx_2$ input pin logic. See <u>Table 15</u> for more information. BUCKx_DVSCTRL[0] should be OTP programmed high before the start-up sequence.

Table 15. Active DVS for 2 DVS Pins Configuration

DVSx_1	DVSx_0	Active DVS for BUCKx
0	0	DVS0
0	1	DVS1
1	0	DVS2
1	1	DVS3

(iv) IO_PINMODE = 0x6: I²C with 2 DVS pins and 2 PGOOD pins

MPIO0	MPIO1	MPIO2	MPIO3	GPIO0	GPIO1	
DVS1_0	DVS2_0	PGOOD1	PGOOD2	SCL	SDA	

BUCKx_DVSCTRL[0] should be OTP programmed high before the start-up sequence. DVS1_0 and DVS2_0 follows the same active DVS table as in IO_PINMODE = 0x3. See <u>Table 13</u> for more information.

(v) IO_PINMODE = 0xE: I2C with 2 DVS pins and 2 AUX ADC pins

MPIO0	MPIO1	MPIO2	MPIO3	GPIO0	GPIO1	
ADC_IN0	ADC_IN1	DVS_PIN1	DVS_PIN2	SCL	SDA	

DVS_PIN0 and DVS_PIN1 behave the same as in IO_PINMODE = 0x4. See <u>Table 14</u> for more information. BUCKx_DVSCTRL[0] should be OTP programmed high before the start-up sequence.

5.6 Configuring DVS Speed

5.6.1 Power-Up and Shutdown Slew Rate Setting

The BUCKx_RSPPUP[2:0] bits in the BUCKx_RSPCFG0 register set the slew rates (DVS speed) in BUCKx only during V_{OUTx} power-up. Similarly, the BUCKx_RSPPDN[2:0] in the BUCKx_RSPCFG0 register sets the slew rates in BUCKx during normal V_{OUTx} shutdown. The achievable slew rates varies with different FBDIV settings (Factory OTP programmed). For more details, see Register <u>BUCK1_RSPCFG0</u>.

5.6.2 DVS Transition Slew Rate Setting

BUCKx_RSPUP[2:0] and BUCKx_RSPDN[2:0] in the BUCKx_RSPCFG1 register sets the slew rates (DVS speed) in BUCKx during normal DVS transiton. The achievable slew rates varies with different FBDIV settings (factory OTP programmed). For more details, see Register <u>BUCK1_RSPCFG1</u>.

5.7 Output Voltage Setting

Each output voltage is set by writing a 10-bit word to DVS Configuration 1 (BUCKx_DVS0CFG1 register) and DVS Configuration 0 (BUCKx_DVS0CFG0 register) in each buck. Configuration 1 holds the MSB and Configuration 0 holds the last two bits of the 10-bit word. The output voltage does not change until the LSB register has been written. <u>BUCK1_DVS0CFG1</u> shows the relationship between the DVS word and V_{OUT}.

5.8 Power Sequencing

When the master chip Enable (EN) pin is brought above an NMOS threshold, the ISL91302BIK powers up its key biasing circuits, loads the OTP configuration registers, and does one of two things based on the preprogrammed OTP setting:

1. Manual buck start-up:

Program the internal IO_BUCKx_EN bits to 1 from I²C/SPI to enable the respective buck. When IO_PINMODE = 0x1, the EN_A and EN_B pins can also be used to enable the respective bucks. If using IO_PINMODE = 0x1, the internal IO_BUCKx_EN bits should be set high in OTP. The slew rate of each buck during its soft-start is specified by the BUCKx_RSPPUP[2:0] bits.

Note: The programmable (1ms to 63ms) delay using BUCKx_EN_DLY[5:0] is not used for Manual Buck start-up.

2. Auto Buck start-up from master chip enable pin:

Run a predetermined start-up sequence for the buck outputs as soon as BOOT is complete. The slew rate of each buck during its soft-start is specified in BUCKx_RSPPUP[2:0].

Note: The delay, BUCKx_EN_DLY[5:0] shown in Figure 24 as EN_dlyx, is programmable from 0 to 63ms in 1ms steps.

<u>Figure 24</u> provides an example of power-up configurability. The master chip enable pin (EN) transitions from 0 to 1 and OTP is loaded over 1.4ms. After the initial 1.4ms boot interval, the buck output start-up sequence begins. In the <u>Figure 24</u> example, BUCK1_EN_DLY is set for 0ms and BUCK2_EN_DLY is set for 1ms.

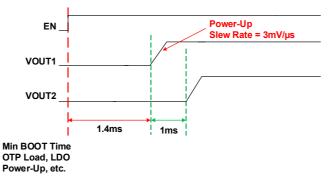


Figure 24. Master Chip Enable Power-Up Example

The buck outputs can also be programmed to execute a controlled shutdown in two ways:

1. Manual buck power-down:

Program the internal IO_BUCKx_EN bit to 0 through I^2C/SPI or lower the Buck Enable pin (EN_A or EN_B when IO_PINMODE = 0x1). The manual method can be used to power down a specific buck (with a controlled slew rate) while keeping the rest of the chip alive.

Note: The programmable (0ms to 63ms) delay from BUCKx_SHUTDN_DLY[5:0] is not used for manual buck power-down.

2. Auto Buck power-down from master chip enable pin:

When the master chip Enable pin (EN) is brought below the falling threshold of the comparator, the Bucks are ramped down at a controlled rate using preprogrammed delays. This is then followed by the power-down of the bias circuits forcing the chip into shutdown. The slew rate of each buck during its power-down (down to \sim 250mV) is specified in BUCKx_RSPPDN[2:0].

Note: The delay, BUCKx_SHUTDN_DLY[5:0] shown in <u>Figure 25</u> as Dis_dlyx, is programmable from 0 to 63ms in 1ms steps.

<u>Figure 25</u> provides an example of power-down configurability. The master chip enable pin (EN) transitions from logic 1 to 0. In the <u>Figure 25</u> example, BUCK1_SHUTDN_DLY is set for 1ms and BUCK2_SHUTDN_DLY is set for 2ms.

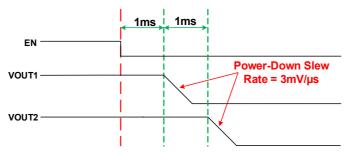


Figure 25. Auto Chip Power-Down Example

The actual slew rate that each buck ramps down to is specified by the register BUCKx_RSPSHUTDN. This slew rate is controlled until the output voltage is ~250mV, at which point the ISL91302BIK engages a weak resistive pull-down (if enabled by factory OTP) that can keep $V_{OUT} = 0V$ when the buck is not enabled. Figure 26 shows an example of the weak pull-down behavior.

• **Option 1:** If the disable event for a buck output is the master chip enable pin (EN) falling below its logic low threshold, then when the output falls below 250mV, the output voltage decay is dictated by the system load passively discharging the buck output capacitance. PULL_DOWN_DISCHARGE IO_MPIO_DATA[4] bit per the IO_MPIO_DATA register is **not** used in this method.

• **Option 2:** If the disable event for a buck output is the master chip enable pin (EN) remaining high and the enable register bit (IO_BUCKx_EN) transitioning from a logic 1 to a logic 0, then PULL_DOWN_DISCHARGE IO_MPIO_DATA[4] bit per the IO_MPIO_DATA register is used enabling an internal weak pull down.

Note: The weak pull-down can be disabled (using factory OTP).

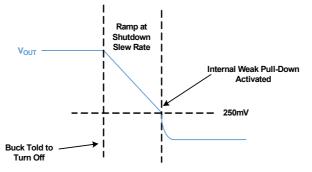


Figure 26. Buck Disable Waveform

5.9 Watchdog Time (WDOG_RST Pin)

The ISL91302BIK implements a watchdog function which allows the output voltages to return to a safe default when communication to the processor host is lost. This is determined by monitoring the state of the WDOG_RST pin. If the pin goes into the failure state for a duration greater than the programmed debounce time, the default voltages from OTP are restored.

Both bucks respond to the WDOG_RST pin. The polarity of the WDOG_RST pin is active low.

Table 16. WDOG_RST Function

Action				
At Boot Up	DVS registers are loaded with values stored in OTP.			
After Debounce Time	Restore selected output voltages to their original values stored in OTP (DVS0), and slew the buck outputs to that voltage.			

Total recovery time for the buck is the sum of the t_{SLEW} and $t_{DEBOUNCE}$. The target voltage WDOG_RST pin resets the ISL91302BIK buck output(s), set by DVS0, which reside in the BUCKx_DVS0CFG1 and BUCKx_DVS0CFG0 registers.

 t_{SLEW} is determined by the default output voltage divided by $3mV/\mu s$, while $t_{DEBOUNCE}$ is set at 10ms. $t_{DEBOUNCE}$ is factory programmable.

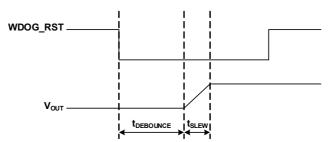


Figure 27. Watchdog Timer Example Case

5.10 Interrupt Pin

The ISL91302BIK can alert the host when a warning or a fault has occurred through an IRQ interrupt request signal with configurable masking options that is connected to a configurable interrupt (INT) pin. The interrupt pin can be programmed to be active high, active low, an open drain, or a CMOS output.

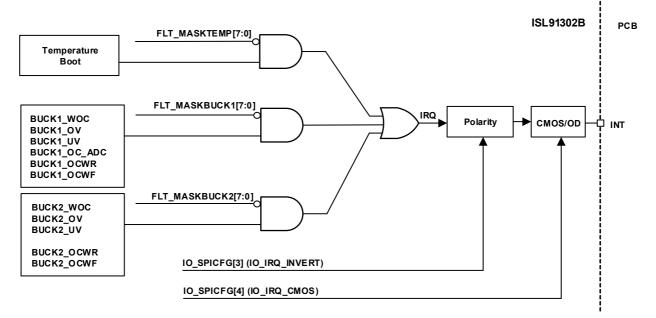


Figure 28. Interrupt Tree

6. **Protection Features (Faults)**

The ISL91302BIK has integrated Overcurrent (OC), Overvoltage (OV), Undervoltage (UV), and Over-Temperature (OT) protection features.

6.1 Over-Temperature Protection

The ISL91302BIK provides protection against over-temperature conditions. An over-temperature protection circuit continuously monitors the die temperature of the chip and raises a fault when the temperature exceeds a predefined limit programmed by Register <u>FLT_TEMPSHUTDN</u>. The ISL91302BIK also contains a programmable thermal warning threshold set by Register <u>FLT_TEMPWARN</u>. Programmable Hysteresis enables the circuit to clear the fault or warning once the temperature is below a user-defined safe temperature. The warning and shutdown hysteresis level are factory programmable. Contact Renesas <u>support</u> for custom settings. The over-temperature protection is disabled if all bucks are operating in PFM mode or in the off state.

6.2 Overcurrent Protection Mode

The ISL91302BIK has implemented a comparator-based OCP and an ADC-based OCP mechanism. The comparator based OCP or 'WOC' block has a current comparator, which compares the load current through the high-side power FET with the reference current level through a replica device. If the sensed FET current is higher than the WOC threshold, the WOC is triggered immediately, preventing a catastrophic condition. The WOC disables the buck and latches the power-stage into tri-state until the fault is cleared. The WOC fault is self-cleared when the OC condition is removed and the buck attempts to re-enable in a hiccup type fashion. The ADC based OCP monitors the averaged high-side and low-side MOSFET current for each phase and is slower but more accurate than the comparator based WOC. If the Buck total current is higher than the ADC based OCP threshold, the ADC OCP is triggered, which shutdowns the Buck and latches the power-stage into tri-state. ADC based OCP can only be cleared by recycling the PVIN/AVIN or by toggling the EN pin. Please note the ADC based OC cannot be cleared by toggling the IO_BUCKx_EN bit by I²C/SPI.

Overcurrent protection can be enabled or disabled using the fault register setting in FLT_BUCKx_CTRL. ADC based current warning and shutdown limits can be adjusted with the FLT_BUCKx_ISENSEWARN and FLT_BUCKx_ISENSESHUTDN registers, respectively.

6.3 Overvoltage (OV)/Undervoltage (UV) Protection

The ISL91302BIK protects against output overvoltage and undervoltage fault conditions. The OV/UV protection circuitry has low power comparators configured with differential input and single-ended outputs capable of working over large common-mode input ranges. This comparator is used to monitor the output voltage in both DCM and CCM for faults. By default, when an OV/UV event is triggered, the buck converter is shut down until the fault is cleared. Fault control register FLT_BUCKx_CTRL is used to enable or disable the functionality. The OV/UV limits are adjustable using the BUCKx_UVOVTH[1:0] bits in the BUCKx_PROTCFG register. See <u>Table 17</u> for more details.

BUCKxUVOVTH[1:0]	OV/UV Threshold
0x0	±150mV around DAC target
0x1	±200mV around DAC target
0x2	±250mV around DAC target
0x3	±300mV around DAC target

Table 17. OV/UV Protection Thresholds

7. Serial Communication Interface

The ISL91302BIK has two serial interface protocols to read/write the registers.

- SPI
- I²C

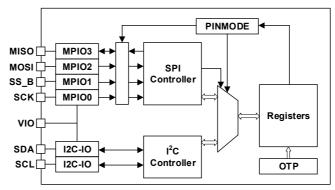


Figure 29. SPI and I²C Interface Block Diagram

The arbitration of the register access bus between SPI and I^2C is determined by the pad MPIO1 when using IO_PINMODE = 0x0, as shown in <u>Table 18</u>:

Table 18. SPI/I²C Register Access

Register IO_PINMODE	Pad MPIO_1 (SS_B)	Register Access		
0	0	SPI (Read/Write Access (<u>Note 11</u>))		
	1	I ² C (<u>Note 12</u>)		

Notes:

11. When the device is configured for SPI access, the I^2C should not be addressed with the device ID.

12. When the device is configured for I²C access, in PINMODE 0, the SS_B line must be held high.

After switching from SPI to I^2C or from I^2C to SPI, there is a minimum of 50ns wait time is required before starting a transaction.

7.1 SPI Serial Interface

The SPI interface is a general specification four-wire slave interface capable of operating at a clock speed of up to 26MHz. It is based on byte transfers.

7.1.1 SPI Data Protocol

Both Read and Write SPI transactions begin when SS_B goes low and end when SS_B goes high.

7.1.1.1 Write Operation

To write to the ISL91302BIK, the master (controller) needs to drive SS_B low and send the Control Byte, followed by the register address, packet length (if IO_SPIMODE = 1), Data bytes to be written, and finally drive SS_B high to terminate the transaction as shown below. The MSB of the Control byte is the R/W bit, which needs to be set to 'write' operation (see IO_SPIRWPOL). Bit 6, AI indicates if it is going to be a single-byte write operation or a multi-byte write. Bits 1 and 0 of the Control byte, indicate the page number of the register location desired to be written (MSBs of the register address). The register address byte is the 8-bit address of the register within the page specified by Page[1:0] bits. If IO_SPIMODE = 1, the register address needs to be followed by 8-bit packet length, which indicates the number of bytes to be written. Following the packet length field, the master needs to send the data bytes. When all eight bits of data are received, they get written to the specified register address and the ISL91302BIK increments the register address.

In single byte transactions, (AI = 0 or Packet length = 1), the ISL91302BIK goes into wait state and waits for SS_B to go high.

In multi-byte transactions with IO_SPIMODE = 1, the ISL91302BIK writes the subsequently received data bytes to sequentially incrementing addresses until the number of bytes, as specified by 'packet length', are received and then go into the wait state and wait for SS_B to go high. For multi-byte transactions with IO_SPIMODE = 0 and AI = 1, the ISL91302BIK keeps writing the subsequently received data bytes to sequentially incrementing addresses until SS_B goes high. If SS_B goes high in the middle of a transaction, the transaction is terminated. The data byte is written if all eight bits are received.

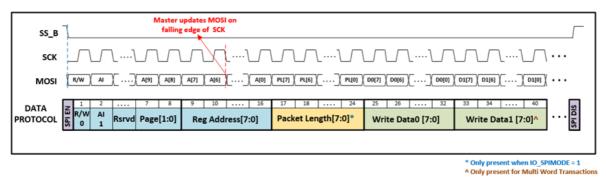
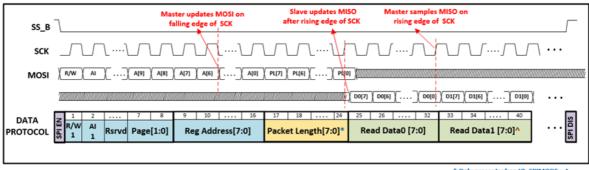


Figure 30. SPI Write Transaction with IO_SPIMODE = 1; IO_SPICPOL = 0; IO_SPICPHA = 0


7.1.1.2 Read Operation

To read from the ISL91302BIK, the master (controller) needs to drive SS_B low and then send the Control Byte, followed by register address, packet length (if IO_SPIMODE = 1). The ISL91302BIK then sends the data bytes from the requested registers and finally the master drives SS_B high to terminate the transaction. The MSB of the Control byte is the R/W bit which needs to be set to 'read' operation (see IO_SPIRWPOL). Bit 6, AI indicates if it is going to be a single-byte read operation or a multi-byte read. Bits 1 and 0 of the Control byte indicate the page number of the register location be read (MSBs of the register address). The register address byte is the 8-bit address of the register within the page specified by Page[1:0] bits. If IO_SPIMODE = 1, the register address needs to be followed by an 8-bit packet length, which indicates the number of bytes to be written. Following the packet length field, the ISL91302BIK sends the data from the requested register. When all eight bits of data from the requested register address.

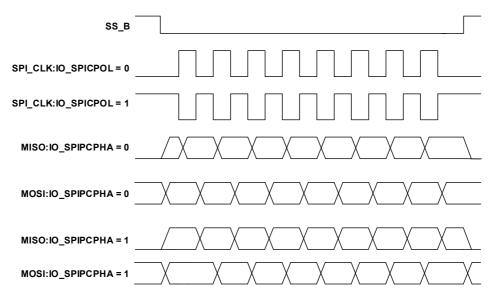
In a single-byte transaction, (AI = 0 or Packet length = 1), the ISL91302BIK goes into a wait state and waits for SS_B to go high.

In a multi-byte transaction with IO_SPIMODE = 1, the ISL91302BIK sends the data bytes from sequentially incrementing addresses until the number of bytes as specified by 'packet length' are sent and then goes into a wait state and waits for SS_B to go high. For multi-byte transactions with IO_SPIMODE = 0 and AI = 1, the ISL91302BIK keeps sending data bytes from sequentially incrementing addresses until SS_B goes high.

Note: The MISO pin is pulled low while SS_B is high.

* Only present when IO_SPIMODE = 1 ^ Only present for Multi Word Transactions

Figure 31. SPI Read Transaction with IO_SPIMODE = 1; IO_SPICPOL = 0; IO_SPICPHA = 0


R/W	Read/Write Bit Indicating Read or Write Operation
AI	Auto Increment. 1 indicates multi-byte transfer, 0 indicates single byte transfer
Page	2-bit page address of the register to be written/read
Address	8-bit register address of the register to be written/read
Packet Length	8-bit packet length indicating number of data bytes to be transferred. Overrides AI when IO_SPIMODE = 1
Read Data	Data in the register at address, Address [7:0] + n
Write Data	Data to be written to the register at address, Address [7:0] + n

7.1.2 SPI Configuration

The following register bits configure the SPI operation:

- **IO_SPICPOL:** SPI clock polarity, ISL91302BIK is configured as active high, IO_SPICPOL = 0
- IO_SPICPHA: SPI clock phase, ISL91302BIK samples data on rising edge of SPI clock, IO_SPICPHA = 0

The four possible modes of clocking are shown in Figure 32.

Figure 32. Four Possible Clocking Modes

• **IO_SPIRWPOL**: R/W bit polarity, ISL91302BIK SPI_RWPOL is set to 0, 1: Read, 0: Write.

SPI_RWPOL	R/W	Operation		
0	0	Write		
0	1	Read		

• **IO_SPIMODE**: Packet length enable, the ISL91302BIK uses packet length mode by default, meaning the third data byte from master is the packet length and indicates the total number of data words to be sent/received in a burst transaction.

7.1.3 SPI Timing

<u>Figure 33</u> shows SPI timing for IO_SPICPOL = 0; IO_SPICPHA = 0. The timing values in <u>Tables 19</u> hold true for other values of IO_SPICPOL, IO_SPICHPA as well.

Table 19. Timing Values

Parameter	Symbol	Min	Max	Units
Clock Period	t ₁	38.4		ns
Enable Lead Time	t ₂	12		ns
Enable Lag Time	t ₃	12		ns
Clock High or Low Time	t ₄	15		ns
Data Setup Time (Input)	t ₅	12		ns
Data Hold Time (Input)	t ₆	10		ns
Time MISO is Stable before the Next Rising Edge of CLK	t ₇	5		ns
Data Held after Clock Edge (Output)	t ₈	5		ns
Load Capacitance	CL		10	pF

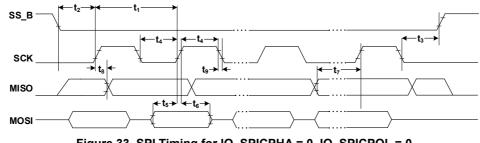


Figure 33. SPI Timing for IO_SPICPHA = 0, IO_SPICPOL = 0

7.2 I²C Interface

The I²C interface is a simple, bidirectional 2-wire bus protocol, consisting of the Serial Clock Control (SCL/I2C_CLK) and the Serial Data Signal (SDA/I2C_SDA). The ISL91302BIK hosts a slave I²C interface that supports data speeds up to 3.4Mbps. SCL is an input to the ISL91302BIK and is supplied by the controller, whereas SDA is bidirectional. The ISL91302BIK has an open-drain output to transmit data on SDA. An external pull-up resistor must be placed on the serial data line to pull the drain output high during data transmission.

The ISL91302BIK uses a 7-bit hardware address scheme. The default address is set to 0x1D by a one-time programmable fuse.

7.2.1 I²C Bus Operation

The chip supports 7-bit addressing. The ISL91302BIK I²C device address is reconfigurable through the OTP.

All communication over the I²C interface is conducted by sending the MSB of each byte of data first. Data states on the SDA line can change only during SCL LOW periods. SDA state changes during SCL HIGH are reserved for indicating START and STOP conditions (see Figure 38).

All I²C interface operations must begin with a START condition, which is a HIGH to LOW transition of SDA while SCL is HIGH. The ISL91302BIK continuously monitors the SDA and SCL lines for the START condition and does not respond to any command until this condition is met. All I²C interface operations must be terminated by a STOP condition, which is a LOW to HIGH transition of SDA while SCL is HIGH.

An Acknowledge (or ACK), is a software convention used to indicate a successful data transfer. The transmitting device, either master or slave, releases the SDA bus after transmitting eight bits. During the ninth clock cycle, the receiver pulls the SDA line LOW to acknowledge the reception of the eight bits of data (Figure 38). The ISL91302BIK responds with an ACK after recognition of a START condition, followed by a valid Identification (also known as I²C Address) Byte. The ISL91302BIK also responds with an ACK after receiving a Data Byte of a write operation. The master must respond with an ACK after receiving a Data Byte of a read operation.

7.2.1.1 Write Operation

A Write operation requires a START condition, followed by an ISL91302BIK I²C Address byte with the R/W bit set to 0, a Register Address Byte, Data Bytes, and a STOP condition. After each byte, the ISL91302BIK responds with an ACK. After every data byte, the ISL91302BIK auto increments the register address so subsequent data bytes get written to sequentially incremental register locations. A STOP condition that terminates the write operation must be sent by the master after sending at least one full data byte and its associated ACK signal. If a STOP byte is issued in the middle of a data byte, then the write is not performed.

Figure 34. 1-Byte Write to Register M

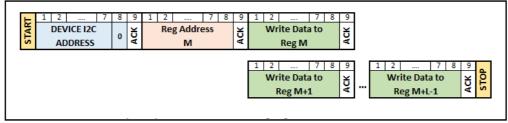


Figure 35. L-Byte Sequential Data Write Starting Register M

7.2.1.2 Read Operation

A Read operation consists of a three-byte dummy write instruction to send the register address to begin reading from, followed by a Current Address Read operation. The master initiates the operation, issuing the following sequence: a START condition, followed by an ISL91302BIK I²C Address byte with the R/W bit set to 0, a Register Address Byte, a second START, and a second ISL91302BIK I²C Address byte with the R/W bit set to 1. After each of the three bytes, the ISL91302BIK responds with an ACK. The ISL91302BIK then transmits Data Bytes. The master terminates the Read operation from the ISL91302BIK by issuing a STOP condition following the last bit of the last data byte. After every data byte, the ISL91302BIK auto increments the register address so subsequent data bytes are sent from sequentially incremental register locations.

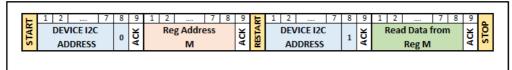


Figure 36. 1-Byte Data Read from Register M

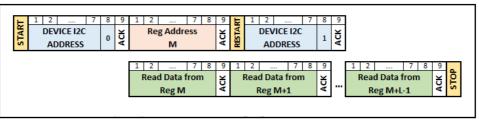


Figure 37. L-Byte Sequential Data Read Starting Register M

7.2.2 I²C Timing

The timing specifications of the I²C I/O from the I²C spec are shown in <u>Figure 38</u> and <u>Table 20</u>. The I²C controller provides a slave I²C transceiver capable of interpreting I²C protocol in Standard, Fast, Fast+, and High Speed modes.

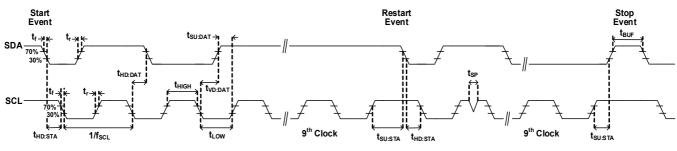


Figure 38. I²C Timing

Table 20. I²C Specification

		Standard Mode		Fast Mode		Fast Mode Plus		High Speed Mode		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Clock Frequency	f _{SCL}	0	100	0	400	0	1000	0	3400	kHz
Hold Time (repeated) START Condition. (After this period, the first clock pulse is generated.)	t _{HD} ;STA	4000	-	600	-	260	-	160	-	ns
LOW Period of the SCL Clock	t _{LOW}	4700	-	1300	-	500	-	160	-	ns
HIGH Period of the SCL Clock	t _{HIGH}	4000	-	600	-	260	-	60	-	ns
Setup Time for a Repeated START Condition	t _{SU;STA}	4700	-	600	-	260	-	160	-	ns
Data Hold Time	t _{HD;DAT}	15	-	15	-	15	-	15	70	ns
Data Setup Time	t _{SU;DAT}	250	-	100	-	50	-	10	-	ns
Rise Time of SCL	t _{rCL}	-	1000	-	300	-	120	-	40	ns
Fall Time of SCL	t _{fCL}	-	300	-	300	-	120	-	40	ns
Rise Time of SDA	t _{rDA}	-	1000	20	300	-	120	10 <u>Note 14</u>	80	ns
Fall Time of SDA	t _{fDA}	-	300	20 × (V _{DD} /5.5V) <u>Note 13</u>	300	20 × (V _{DD} /5.5V) <u>Note 13</u>	120	10 <u>Note 14</u>	80	ns
Setup Time for STOP Condition	t _{SU;STO}	4000	-	600	-	260	-	160	-	ns
Bus Free Time between a STOP and START Condition	t _{BUF}	4700	-	1300	-	500	-	-	-	ns
Capacitive Load for each Bus Line	Cb	-	400	-	400	-	400		100	pF
Output Fall Time from VIHmin to VILmax	t _{of}	-	250[5]	20 × (V _{DD} /5.5V)[6]	250[5]	20 × (V _{DD} /5.5V)[6]	120[7]	10 <u>Note 14</u>	80	ns
Pulse Width of Spikes Suppressed by the Input Filter	t _{SP}	-	-	0	50	0	50	0	10	ns

Notes:

13. Valid only for V_{DD} < 4V.

14. Valid only for V_{DD} < 1.9V.

15. V_{DD} is the pull-up source to the I²C lines (GPIO0, GPIO1).

ISL91302BIK

8. Board Layout Recommendations

The ISL91302BIK is a high frequency multiphase switching regulator and the proper PCB layout is an important design practice to ensure a satisfactory performance. The power loop is composed of the output inductor L, the output capacitor C_{OUT} , the PH pin, and the PGND pin. It is important to make the power loop as small as possible and the connecting traces among them should be direct, short, and wide. The same practice should be applied to the connections of the PVIN pin, the input capacitor, and PGND. The switching node of the converter, the PH pin, and the traces connected to this node are very noisy, so keep the VOUT and RTN lines and other noise sensitive traces away from these traces. Place the input capacitors as close as possible to the PVIN(s) and PGND(s) pins. Connect the ground of the input and output capacitors as close as possible as well. In addition, a solid ground plane is helpful for a good EMI performance.

Inductor placement should also be as close to the phase pins as possible. Using wide traces and reducing the length helps to improve the overall efficiency and reduce the amount of radiated EMI. For the phase traces, Renesas recommends only descending one layer to reduce the effective path to the inductor. Ensure the length and width of each inductor trace and number of microvias used match to help ensure proper current sharing between phases.

Place an AVIN filter capacitor as close as possible to the AVIN_FILT pin but away from noise sources. Always reference the GND pad of the decoupling capacitor to a quiet GND plane.

Do not use plated through-holes when passing the BGA pins to lower layers. Renesas recommends to using microvias that are staggered if they are required to pass down multiple layers.

The VOUT and RTN lines are used to sense the output voltage and should be routed directly to the load. Connecting the RTN line to ground away from the load causes a ground error in the output voltage load regulation due to parasitic ground resistance. Keep these traces away from switching nodes, which could be a converter phase node or high-speed digital signals. The use of small low inductance capacitors at the load improves noise immunity and transient response to the ISL91302BIK.

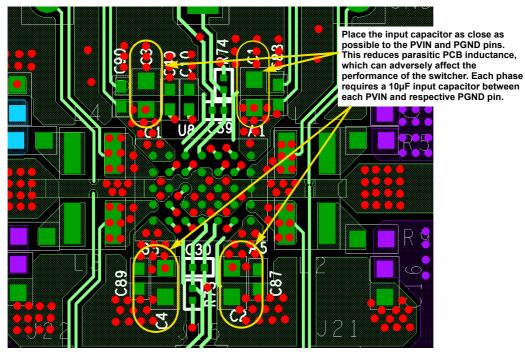


Figure 39. Recommended PCB Layout Top Layer

Provide a solid ground plane in the adjacent layer to provide a low impedance path to support high current flow. Copper planes need to be parallel with the phase traces on the top layer to minimize resistance, and they must be surrounded by a GND plane to prevent noise coupling.

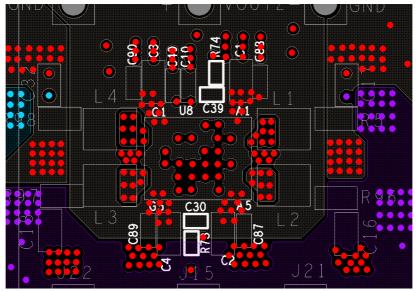


Figure 40. Recommended PCB Layout Second Layer

Feedback lines must be kept away from noise sources such as the switching node, inductor, and high-speed digital signals. Run the traces to cut through the surrounding ground plane areas to minimize noise pick up. Add ground planes above and below the signals when applicable.

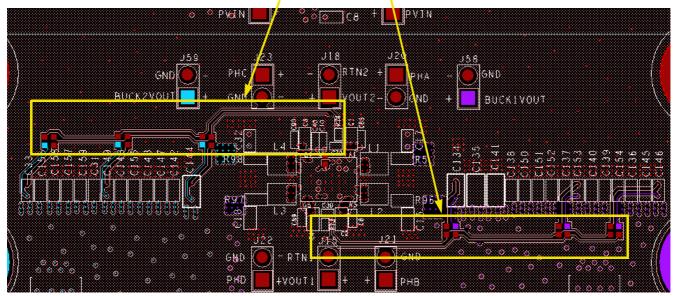


Figure 41. Recommended PCB Layout Bottom Layer

8.1 PCB Layout Summary

- 1. Place input capacitors as close as possible to their respective PVIN and PGND pins.
- 2. Route phase nodes with short, wide traces, and avoid any sensitive nodes.
- 3. Route VOUT and RTN lines differentially to the load and use small low ESL capacitors at the load for bypassing.
- 4. Output capacitors should be close to the inductors and have a low impedance path to the PGND pins.
- 5. Keep digital and phase nodes from intersecting AVIN_FILT, VOUT, and RTN lines on adjacent layers.

8.2 PCB Design for TFBGA Recommendations

Design Feature	Design Specification						
Cu Pad Diameter	0.8mm pitch: 0.215 ±0.012mm						
Microvia Structure	All microvias should be copper filled.						
Microvia Stacking	Avoid microvia stacking if possible. Use staggered vias instead. If microvia stacking is absolutely necessary for the layout, the maximum number of recommended via stacks is two.						
Plated Through-Hole (PTH) Location	No PTH should be placed under the BGA ball pads. Microvias and trace routing should be used to fan the PTH away from the BGA ball array.						

9. Register Address Map

When communicating with registers that contain reserved bits, it is recommended to do a masked write/read to avoid modifying sensitive register values.

Address	Register	Address	Register	Address	Register
0x01	IO_CHIPNAME	0x2A	ADC_SAMPLE4TMSB	0x77	BUCK1_DVS2CFG0
0x13	FLT_RECORDTEMP	0x2B	ADC_SAMPLE4TLSB	0x78	BUCK1_DVS3CFG1
0x14	FLT_RECORDBUCK1	0x2C	ADC_SAMPLE5MSB	0x79	BUCK1_DVS3CFG0
0x15	FLT_RECORDBUCK2	0x2D	ADC_SAMPLE5LSB	0x7D	BUCK1_DVSSEL
0x16	ADC_SAMPLE0MSB	0x2E	ADC_SAMPLE6MSB	0x7E	BUCK1_RSPCFG1
0x17	ADC_SAMPLE0LSB	0x2F	ADC_SAMPLE6LSB	0x7F	BUCK1_RSPCFG0
0x18	ADC_SAMPLE1PH1MSB	0x30	ADC_AUX0MSB	0x80	BUCK1_EN_DLY
0x19	ADC_SAMPLE1PH1LSB	0x31	ADC_AUX0LSB	0x81	BUCK1_SHUTDN_DLY
0x1A	ADC_SAMPLE1PH2MSB	0x32	ADC_AUX1MSB	0x82	BUCK2_EA2
0x1B	ADC_SAMPLE1PH2LSB	0x33	ADC_AUX1LSB	0x85	BUCK2_DCM
0x1C	ADC_SAMPLE1PH3MSB	0043	IO_SPICFG	0x8E	BUCK2_DVS0CFG1
0x1D	ADC_SAMPLE1PH3LSB	0x44	IO_MODECTRL	0x8F	BUCK2_DVS0CFG0
0x1E	ADC_SAMPLE1PH4MSB	0x58	FLT_TEMPWARN	0x90	BUCK2_DVS1CFG1
0x1F	ADC_SAMPLE1PH4LSB	0x59	FLT_TEMPSHUTDN	0x91	BUCK2_DVS1CFG0
0x20	ADC_SAMPLE1TMSB	0x60	FLT_MASKTEMP	0x92	BUCK2_DVS2CFG1
0x21	ADC_SAMPLE1TLSB	0x61	FLT_MASKBUCK1	0x93	BUCK2_DVS2CFG0
0x22	ADC_SAMPLE2MSB	0x62	FLT_MASKBUCK2	0x94	BUCK2_DVS3CFG1
0x23	ADC_SAMPLE2LSB	0x66	BUCK1_EA2	0x95	BUCK2_DVS3CFG0
0x24	ADC_SAMPLE3MSB	0x69	BUCK1_DCM	0x99	BUCK2_DVSSEL
0x25	ADC_SAMPLE3LSB	0x72	BUCK1_DVS0CFG1	0x9A	BUCK2_RSPCFG1
0x26	ADC_SAMPLE4PH1MSB	0x73	BUCK1_DVS0CFG0	0x9B	BUCK2_RSPCFG0
0x27	ADC_SAMPLE4PH1LSB	0x74	BUCK1_DVS1CFG1	0x9C	BUCK2_EN_DLY
0x28	ADC_SAMPLE4PH2MSB	0x75	BUCK1_DVS1CFG0	0x9D	BUCK2_SHUTDN_DLY
0x29	ADC_SAMPLE4PH2LSB	0x76	BUCK1_DVS2CFG1		

Note: The registers not listed in the register map and RESERVED bits in the register map are reserved for factory use only. Changing these registers/bits can result in unexpected operation.

10. Register Description by Address

Address	Bit	Name	R/W	Default	Description
IO_CHIPN	AME				
0x01	7:0	IO_CHIPNAME	R	0x02	Chip Name, Set by Renesas 0x02 ISL91302BIK, dual/single output PMIC
FLT_REC	ORD [.]	TEMP			
0x13	7	FLT_BOOT	R	0x0	BOOT Occurred
					Read only, cleared when read
					0x0 No boot process has occurred since the last time this register was read.
					0x1 Boot process has occurred (set high after OTP read is finished).
	6:4	Reserved	R	0x0	Reserved
	3	FLT_TEMPSDR	R	0x0	· · · · · · · · · · · · · · · · · · ·
					Over-Temperature (OT) Shutdown (Rising Threshold)
					Read only, cleared when read
					0x0 No fault, less than threshold.
					0x1 Fault, greater than threshold.
	2	FLT_TEMPWARNR	R	0x0	
					Over-Temperature (OT) Warning (Rising Threshold)
					Read only, cleared when read
					0x0 No fault, less than threshold.
					0x1 Fault, greater than threshold.
	1	FLT_TEMPWARNF	R	0x0	Over-Temperature (OT) Warning (Falling Threshold) (Warning1 Hysteresis)
					Read only, cleared when read
					0x0 No fault, less than threshold.
					0x1 Fault, greater than threshold.
	0	FLT_TEMPSDF	R	0x0	Over-Temperature (OT) Shutdown (Falling Edge) (Shutdown Hysteresis)
					Read only, cleared when read
					0x0 No fault, less than threshold.
					0x1 Fault, greater than threshold.

Address	Bit	Name	R/W	Default	Description
FLT_REC	ORD	BUCK1			
0x14	7	Reserved	R	0x0	Reserved
	6	FLT_BUCK1_WOC	R	0x0	
					Way Overcurrent (WOC) for Buck1
					Read only, cleared when read
					0x0 No fault, less than threshold.
					0x1 Fault, greater than threshold.
	5	FLT_BUCK1_OV	R	0x0	Overvoltage (OV)
					Read only, cleared when read
					0x0 No fault, less than threshold.
					0x1 Fault, greater than threshold.
	4	FLT_BUCK1_UV	R	0x0	
	4		, r	0.00	Undervoltage (UV)
					Read only, cleared when read
					0x0 No fault, greater than threshold.
					0x1 Fault, less than threshold
	3	FLT_BUCK1_OCSDR	R	0x0	
	-				Overcurrent (OC) Shutdown (Rising Threshold) for Buck1
					Read only, cleared when read
					0x0 No fault, less than threshold.
					0x1 Fault, greater than threshold.
	2	FLT_BUCK1_OCWR	R	0x0	Oversurrent (OC) Werping (Pising Threshold) for Pusk1
					Overcurrent (OC) Warning (Rising Threshold) for Buck1 Read only, cleared when read
					0x0 No fault, less than threshold.
					0x0 No radit, ress than threshold. 0x1 Fault, greater than threshold.
	1	FLT_BUCK1_OCWF	R	0x0	Overcurrent (OC) Warning (Falling Threshold) Buck1
					Read only, cleared when read
					0x0 No fault, less than threshold.
					0x1 Fault, greater than threshold.
	0	Reserved	R	0x0	Reserved
FLT_REC	ORD				1
- 0x15	7	Reserved	R	0x0	See <u>FLT_RECORDBUCK1</u>
	6	FLT_BUCK2_WOC	R	0x0	1
	5	FLT_BUCK2_OV	R	0x0	
	4	FLT_BUCK2_UV	R	0x0	
	3	FLT_BUCK2_OCSDR	R	0x0	
	2	FLT_BUCK2_OCWR	R	0x0	
	1	FLT_BUCK2_OCWF	R	0x0	
	0	Reserved	R	0x0	

Address	Bit	Name	R/W	Default	De	scription
ADC_SAN	IPLE	0MSB				
0x16	7:0	ADC_SAMPLE0MSB	R		Upper Byte of Temperature Sam (combine with LSB for 16-bit val	
					Source	Temp. Sensor
					Range	±200 °C
					Format	s.13.2
					Units	Temperature °C
					0x0000	0
					0x0001	0.25
					0x0002	0.5
					0x0003	0.75
					0x0004	1
					0x0010	4
					0x0100	64
					0x0320	200
					0xFCE0	-200
					0xFCDF	-219.75
					0xFFFF	-0.25
ADC_SAM	IPLE	0LSB	I			
0x17	7:0	ADC_SAMPLE0LSB	R		Lower Byte of Temperature Sampl See <u>"ADC_SAMPLE0MSB"</u> for de	e (combine with MSB for 16-bit value) code.

Address	Bit	Name	R/W	Default	D	escription
ADC_SAM	IPLE	1PH1MSB				
0x18	7:0	ADC_SAMPLE1PH1MSB	R		Upper Byte of Buck1, Phase1 (combine with LSB for 16-bit v	
					Source	ISENSE
					Range	±8.192A
					Format	s.13.2
					Units	Current (mA)
					0x0000	0
					0x0001	0.25
					0x0002	0.5
					0x0003	0.75
					0x0004	1
					0x0010	4
					0x0100	64
					0x7FFF	8191.75
					0x8000	-8192
					0x8001	-8191.75
					0xFFFF	-0.25
ADC_SAM	/IPLE	1PH1LSB				
0x19	7:0	ADC_SAMPLE1PH1LSB	R		Lower Byte of Buck1, Phase1 Ouvalue) See <u>"ADC_SAMPLE1PH1</u>	Itput Current (combine with MSB for 16-bit
ADC_SAM	IPLE	1PH2MSB				
0x1A	7:0	ADC_SAMPLE1PH2MSB	R		Upper Byte of Buck1, Phase2 Ouvalue.) See <u>"ADC_SAMPLE1PH</u>	utput Current (combine with LSB for 16-bit <u>1MSB</u> [*] for decode.
ADC_SAM	IPLE	1PH2LSB				
0x1B	7:0	ADC_SAMPLE1PH2LSB	R		Lower Byte of Buck1, Phase2 Ou value) See <u>"ADC_SAMPLE1PH1</u>	tput Current (combine with MSB for 16-bit MSB [*] for decode.
ADC_SAM	IPLE	1PH3MSB				
0x1C	7:0	ADC_SAMPLE1PH3MSB	R		Upper Byte of Buck1, Phase3 Ou value.) See <u>"ADC_SAMPLE1PH</u>	utput Current (combine with LSB for 16-bit <u>1MSB</u> [*] for decode.
ADC_SAM	IPLE	1PH3LSB				
0x1D	7:0	ADC_SAMPLE1PH3LSB	R		Lower Byte of Buck1, Phase3 Ou value) See <u>"ADC_SAMPLE1PH1</u>	tput Current (combine with MSB for 16-bit MSB [*] for decode.
ADC_SAM	IPLE	1PH4MSB				
0x1E	7:0	ADC_SAMPLE1PH4MSB	R		Upper Byte of Buck1, Phase4 Ou value.) See <u>"ADC_SAMPLE1PH</u>	utput Current (combine with LSB for 16-bit <u>1MSB</u> [*] for decode.
ADC_SAM	IPLE	1PH4LSB		I		
0x1F	7:0	ADC_SAMPLE1PH4LSB	R		Lower Byte of Buck1, Phase4 Ouvalue) See <u>"ADC_SAMPLE1PH1</u>	tput Current (combine with MSB for 16-bit

Address	Bit	Name	R/W	Default	Des	scription
ADC_SAM	IPLE	1TMSB		L L		
0x20	7:0	ADC_SAMPLE1TMSB	R		Upper Byte of Buck1, Total Outp (Combine with LSB for 16-bit val	ut Current Reading ue.)
					Source	I _{SENSE}
					Range	±32.768A
					Format	s.15
					Units	Current (mA)
					0x0000	0
					0x0001	1
					0x0002	2
					0x0003	3
					0x0004	4
					0x0010	16
					0x0100	256
					0x7FFF	32767
					0x8000	-32768
					0x8001	-32767
					0xFFFF	-1
ADC_SAN	/IPLE	1TLSB	I			
0x21	7:0	ADC_SAMPLE1TLSB	R		Lower Byte of Buck1, Total Output 16-bit value) See <u>"ADC_SAMPLE1</u>	Current Reading (combine with MSB f TMSB" for decode.

Address	Bit	Name	R/W	Default	Des	cription
ADC_SAM	IPLE	2MSB				
0x22	0x22 7:0 ADC_SAMPLE2MSB	R		Upper Byte of Buck1, PVIN Sam (combine with LSB for 16-bit value		
					Source	PVIN
					Range	±8.192V
					Format	s.13.2
					Units	Voltage (mV)
					0x0000	0
					0x0001	0.25
					0x0002	0.5
					0x0003	0.75
					0x0004	1
					0x0010	4
					0x0100	64
					0x7FFF	8191.75
					0x8000	-8192
					0x8001	-8191.75
					0xFFFF	-0.25
ADC_SAM	IPLE	2LSB	1			
0x23	7:0	ADC_SAMPLE2LSB	R		Lower Byte of Buck1 PVIN Reading See <u>"ADC_SAMPLE2MSB"</u> for dec	g (combine with MSB for 16-bit value) ode.

Address	Bit	Name	R/W	Default		Description
ADC_SAM	IPLE	3MSB				
0x24	7:0	ADC_SAMPLE3MSB	R		Upper Byte of Buck1, V _{OUT} (combine with LSB for 16-bit	
					Source	V _{OUT}
					Range	±8.192V
					Format	s.13.2
					Units	Voltage (mV)
					0x0000	0
					0x0001	0.25
					0x0002	0.5
					0x0003	0.75
					0x0004	1
					0x0010	4
					0x0100	64
					0x7FFF	8191.75
					0x8000	-8192
					0x8001	-8191.75
					0xFFFF	-0.25
ADC_SAM	/IPLE	3LSB				
0x25	7:0	ADC_SAMPLE3LSB	R		Lower Byte of Buck1 V _{OUT} Rea See <u>"ADC_SAMPLE3MSB"</u> for	ding (combine with MSB for 16-bit value) decode.
ADC_SAM	IPLE	4PH1MSB				
0x26	7:0	ADC_SAMPLE4PH1MSB	R		Upper Byte of Buck2, Phase1 C value) See <u>ADC_SAMPLE1PH</u> :	Dutput Current (combine with LSB for 16-bi 1MSB for decode.
ADC_SAM	IPLE	4PH1LSB	•			
0x27	7:0	ADC_SAMPLE4PH1LSB	R		Lower Byte of Buck2, Phase1 O value) See <u>ADC_SAMPLE1PH</u>	Output Current (combine with MSB for 16-bi 1MSB for decode.
ADC_SAM	IPLE	4PH2MSB				
0x28	7:0	ADC_SAMPLE4PH2MSB	R		Upper Byte of Buck2, Phase2 C value) See <u>ADC_SAMPLE1PH</u>	Dutput Current (combine with LSB for 16-bi 1MSB for decode.
ADC_SAM	/IPLE	4PH2LSB				
0x29	7:0	ADC_SAMPLE4PH2LSB	R		Lower Byte of Buck2, Phase2 O value) See <u>ADC_SAMPLE1PH</u>	Output Current (combine with MSB for 16-bi 1MSB for decode.
ADC_SAM	PLE	4TMSB				
0x2A	7:0	ADC_SAMPLE4TMSB	R		Upper Byte of Buck2, Total Outport Value) See <u>ADC_SAMPLE1TM</u>	put Current (combine with LSB for 16-bit <u>SB</u> for decode.
ADC_SAM	IPLE	4TLSB	1			
0x2B	7:0	ADC_SAMPLE4TLSB	R		Lower Byte of Buck2, Total Outport	put Current (combine with MSB for 16-bit

Address	Bit	Name	R/W	Default	Descri	ption
ADC_SAN	IPLE	5MSB				
0x2C	7:0	ADC_SAMPLE5MSB	R		Upper Byte of Buck2, PVIN Reading (See <u>ADC_SAMPLE2MSB</u> for decode.	
ADC_SAN	IPLE	5LSB				
0x2D	7:0	ADC_SAMPLE5LSB	R		Lower Byte of Buck2, PVIN Reading (See <u>ADC_SAMPLE2MSB</u> for decode.	
ADC_SAN	IPLE	6MSB				
0x2E	7:0	ADC_SAMPLE6MSB	R		Upper Byte of Buck2, V _{OUT} Reading (See <u>ADC_SAMPLE3MSB</u> for decode.	
ADC_SAN	IPLE	6LSB				
0x2F	7:0	ADC_SAMPLE6LSB	R		Lower Byte of Buck2, V _{OUT} Reading (See <u>ADC_SAMPLE3MSB</u> for decode.	combine with MSB for 16-bit value)
ADC_AUX	OMS	В				
0x30	7:0	ADC_AUX0MSB	R		Upper Byte of ADC Auxiliary Input # Can be used in IO_PINMODE = 0xC with internal ADC.	
					Source	AUX0
					Range	±8.192V
				Format	s.13.2	
				Units	Voltage (mV)	
				0x0000	0	
			0x0001	0.25		
					0x0002	0.5
					0x0003	0.75
					0x0004	1
					0x0010	4
					0x0100	64
					0x7FFF	8191.75
					0x8000	-8192
					0x8001	-8191.75
					0xFFFF	-0.25
ADC_AUX	OLSE	3				
0x31	7:0	ADC_AUX0LSB	R		Lower Byte of ADC Auxiliary Input #1 (See <u>"ADC_AUX0MSB"</u> for decode.	combine with MSB for 16-bit value
ADC_AUX	(1MS	В		1		
0x32	7:0	ADC_AUX1MSB	R		Upper Byte of ADC Auxiliary Input #2 (Can be used in IO_PINMODE[3:0] = 0. with internal ADC. See <u>"ADC_AUX0M</u> :	xC, 0xD to measure external voltag
ADC_AUX	(1LSI	3		•		
0x33	7:0	ADC_AUX1LSB	R		Lower Byte of ADC Auxiliary Input #2 (See <u>"ADC_AUX0MSB"</u> for decode.	combine with MSB for 16-bit value

ISL91302BIK

Address	Bit	Name	R/W	Default	Description
IO_SPICF	G				
0x43	7	IO_I2C_SPEED	R/W	0x0	I ² C Speed Control 0x0 Low speed glitch and slew filters by default, high speed filters selectable by bus command.
					0x1 Glitch and slew filters set for high speed 3.4MHz mode.
	6	IO_SDA_SLEWFLTR	R/W	0x0	Transmit Slew Rate Control for I ² C SDA 0x0 Disabled slew filtering. 0x1 Enable slew filtering.
	5	IO_SPIRWPOL	R/W	0x0	R/W Polarity 0x0 R/W 1: Read, 0: Write 0x1 R/W 1: Write, 0: Read
	4	IO_IRQ_CMOS	R/W	0x1	IRQ Type 0x0 Open-drain output 0x1 CMOS output
	3	IO_IRQ_INVERT	R/W	0x1	IRQ Polarity 0x0 Active High 0x1 Active Low
	2	IO_SPICPOL	R/W	0x0	SPI Clock Polarity 0x0 Active High 0x1 Active Low
	1	IO_SPICPHA	R/W	0x0	SPI Clock Phase 0x0 Sample on the leading (first) clock edge Note: Data must be stable for a half cycle before the first clock cycle. 0x1 Sample on the trailing (second) clock edge, regardless of whether that clock edge is rising or falling.
	0	IO_SPIMODE	R/W	0x1	SPI Mode Selection0x0Byte Mode Command ByteR/W, AINC, 0x0, 0x0, 0x0, 0x0, P1, P0 Address ByteAddress ByteA7, A6, A5, A4, A3, A2, A1, A0 Data ByteD7, D6, D5, D4, D3, D2, D1, D00x1Byte Mode with Packet Length Field Command ByteR/W, AINC, 0x0, 0x0, 0x0, 0x0, 0x0, P1, P0 Address ByteAddress ByteA7, A6, A5, A4, A3, A2, A1, A0 Packet Length Byte L7, L6, L5, L4, L3, L2, L1, L0 Data ByteD7, D6, D5, D4, D3, D2, D1, D0

Address	Bit	Name	R/W	Default	Description
IO_MODE	CTR	L			
0x44	7	IO_BUCK1_EN	R/W	0x1	Enable for Buck1 0x0 Buck1 disabled. 0x1 Buck1 enabled.
	6	IO_BUCK2_EN	R/W	0x1	Enable for Buck2 0x0 Buck2 disabled. 0x1 Buck2 enabled.
	5:3	RSVD	R	0x0	Reserved
	2	IO_ENVPPPULLDOWN	R/W	0x1	Enable for weak Pull-down on EN/VPP Pin 0x0 Weak pull-down disabled. 0x1 Weak pull-down enabled.
	1	RSVD	R/W	0x0	Reserved
	0	RSVD	R/W	0x0	Reserved
FLT_TEM	PWA	RN			
0x58	r	FLT_TEMPWARN	R/W	0x55	Temperature Warning Threshold (highest) °C = FLT_TEMPWARN[7:0] (Range 0°C to +255°C) 0x00 0 0x01 1 0x7F 0x80 128 0x81 129 0x8C 0x8C 140 0xFF 0xFF 255

FLT_TEMPSHUTDN RW 0x8C Temperature Shutdown threshold (highest) 0x59 7.0 FLT_TEMPSHUTDN RW 0x8C Imperature Shutdown threshold (highest) 0x00 0 0 0 0 0 0x01 1 0x7F 127 0 0x80 128 0x8C 140 0x8C 0x81 129 0x8C 140 129 129 120 120 120 120 120 120 120 120 120 120 <td< th=""><th colspan="4">Description</th></td<>	Description						
0x59 7:0 FLT_TEMPSHUTDN R/W 0x8C Temperature Shutdown threshold (highest) 0x59 7:0 FLT_TEMPSHUTDN R/W 0x8C *C = FLT_TEMPSHUTDN[7:0] (Range of 0x00 0 0x01 1 0x01 1 0x02 128 0x8E 7:4 FLT_BUCK1_ISENSEWARN 0x5B 7:4 FLT_BUCK1_ISENSEWARN R/W 0x5 Buck1 Current Sense Warning Rising Threshold 1 Hysteresis must be 2 0mA and smail enough to current goes below the failing threshold. 0x5B 7:4 FLT_BUCK1_ISENSEWARNR R/W 0x5 Buck1 Current Sense Warning Rising Threshold 1 IsenseWarning R/W 0x5 Buck1 Current Sense Warning Filling threshold. 0x0 0 0x1 510 <t< td=""><td colspan="7"></td></t<>							
Image: Second State							
0x00 0 0x01 1 0x1 127 0x80 128 0x81 129 0x6C 0x6C 140 0x6C 0x58 7.4 FLT_BUCK1_ISENSEWARN R/W 0x58 7.4 ISENSEWARNR R/W 0x5 Buck1 Current Sense Warning Rising Threshold Hysteresis mat = 512mA* (FLT_BUCK1_ISENSEW Note: Hysteresis must be 20mA and small enough to current goes below the falling threshold. Current (mA) = 512mA* FLT_BUCK1_ISEN 0x4 2048 0x7 0x6 8160 3:0 FLT_BUCK1_sis							
0x01 1 0x7F 127 0x80 128 0x81 129 0x81 129 0x86 140 0x86 140 0x7F 255 FLT_BUCK1_ISENSEWARN 0x86 0x5B 7.4 FLT_BUCK1_ ISENSEWARNR R/W 0x5 Buck1 Current Sense Warning Rising Threshold Hysteresis mat = 512mA* (FLT_BUCK1_ISENSEW) Note: Hysteresis must be ≥ 0mA and small enough to current goes below the falling threshold. Current (mA) = 512mA* FLT_BUCK1_ISENSEW) Note: Hysteresis must be ≥ 0mA and small enough to current (mA) = 512mA* FLT_BUCK1_ISENSEW) Note: Hysteresis must be ≥ 0mA and small enough to current (mA) = 512mA* FLT_BUCK1_ISENSEW) 0x0 0 0 0 0x1 510 0 0 0x4 2048 0 0 0x6 8160 0 0 0x6 8160 0 0 0x1 510 0 0 0x1 510 0 0	ge 0°C to +255°C)						
Image: Second							
0x7F 127 0x80 128 0x81 129 0x8C 0x8C 140 0x8C 0x7F 255 FLT_BUCK1_ISENSEWARN 0x5B 0x5B 7.4 FLT_BUCK1_ISENSEWARNR R/W 0x5 Buck1 Current Sense Warning Rising Threshold Hysteresis must be 2 0mÅ and small enough to current goes below the failing threshold. Current (mA) = 512mA * FLT_BUCK1_ISEN 0x0 0 0x1 510 0x4 2048 0x4 2048 0xF 8160 0x0 0 0x1 510m. 0x0							
Image: Constraint of the second sec							
0x81 129 0x8C 140 0x8C 140 0xFF 255 FLT_BUCK1_ISENSEWARN 0xFF 255 Øx5B 7.4 FLT_BUCK1_ ISENSEWARNR R/W 0x5 Buck1 Current Sense Warning Rising Threshold Hysteresis must be 20mA and small enough to current goes below the falling threshold. 0x00 0							
Image: Constraint of the second sec							
Image: Constraint of the second sec							
FLT_BUCK1_ISENSEWARN R/W 0x5 Buck1 Current Sense Warning Rising Threshold 0x58 7:4 FLT_BUCK1_ISENSEWARNR R/W 0x5 Buck1 Current Sense Warning Rising Threshold 0x58 7:4 FLT_BUCK1_ISENSEWARNR R/W 0x5 Buck1 Current Sense Warning Rising Threshold 0x58 7:4 FLT_BUCK1_ISENSEWARNR R/W 0x5 Buck1 Current Sense Warning Rising Threshold 0x1 510 Current (mA) = 512mA * FLT_BUCK1_ISEN 0x0 0 0x4 2048 Current (mA) = 510mA * FLT_BUCK1_ISEN 0x4 Buck1 Current Sense Warning Falling Threshold 0x7 8160 Current (mA) = 510mA * FLT_BUCK1_ISEN 0x4 Disense Warning Falling Threshold							
FLT_BUCK1_ISENSEWARN 0x5B 7:4 FLT_BUCK1_ ISENSEWARNR R/W 0x5 Buck1 Current Sense Warning Rising Threshold Hysteresis mA = 512mA * (FLT_BUCK1_ISENSEAW Note: Hysteresis must be 2 0mA and small enough to current goes below the falling threshold. 0x1 510 0x4 2048 0x5 8160 3:0 FLT_BUCK1_ ISENSEWARNF R/W 0x4 Buck1 Current (mA) = 510mA * FLT_BUCK1_ISEN 0x7 0x1 510 0x1 0x4 2048 0x4 0x5 8160 0x1 0x1 510mA * FLT_BUCK1_ ISENSEWARNF R/W 0x4							
FLT_BUCK1_ISENSEWARN 0x5B 7:4 FLT_BUCK1_ISENSEWARNR 0x5B 0x5 Buck1 Current Sense Warning Rising Threshold 0x60 0 0 0x7 510 0x0 0x1 510 0x1 0x6 8160 0x4 0x7 8160 0x0 0x0 0 0 0x1 510mA* FLT_BUCK1_ISEN 0x6 0 0x4 0x7 8160 0x0 0x0 0 0x1 0x0 0 0x1 0x0 0 0x1 0x0 0 0x0 0x0 0 0x1							
0x5B 7:4 FLT_BUCK1_ ISENSEWARNR R/W 0x5 Buck1 Current Sense Warning Rising Threshold Hysteresis mA = 512mA* (FLT_BUCK1_ISENSEAW FLT_BUCK1_ISENSEAW Note: Hysteresis must be ≥ 0mA and small enough to current goes below the falling threshold. Current (mA) = 512mA* FLT_BUCK1_ISEN 0x0 Current (mA) = 512mA* FLT_BUCK1_ISEN 0x1 510 0x4 2048 0xF 8160 3:0 FLT_BUCK1_ ISENSEWARNF R/W 0x4 Buck1 Current (mA) = 510mA* FLT_BUCK1_ISEN 0x0 0 0x1 510 0xF 0x1 510 0x4 0x5 8160							
0x5B 7:4 FLT_BUCK1_ ISENSEWARNR R/W 0x5 Buck1 Current Sense Warning Rising Threshold Hysteresis mA = 512mA* (FLT_BUCK1_ISENSEAW FLT_BUCK1_ISENSEAW Note: Hysteresis must be ≥ 0mA and small enough to current goes below the falling threshold. Current (mA) = 512mA* FLT_BUCK1_ISEN 0x0 0 0x1 510 0x4 2048 0xF 8160 3:0 FLT_BUCK1_ ISENSEWARNF R/W 0x4 Buck1 Current (mA) = 510mA* FLT_BUCK1_ISEN 0x0 0 0 0x1 510 0x7 8160							
ISENSEWARNR Buck1 Current Sense Warning Rising Threshold Hysteresis mA = 512mA * (FLT_BUCK1_ISENSEAW FLT_BUCK1_ISENSEAW Note: Hysteresis must be ≥ 0mA and small enough to current goes below the falling threshold. Ox1 512mA * FLT_BUCK1_ISEN 0x0 0 0x1 510 0x4 0x4 2048 0xF 8160 Current (mA) = 510mA * FLT_BUCK1_ISEN 0xF 8160 3:0 FLT_BUCK1_ ISENSEWARNF R/W 0x4 Buck1 Current Sense Warning Falling Threshold Current (mA) = 510mA * FLT_BUCK1_ISEN 0x0 0 0x1 510 0xF 0x1 510mA * FLT_BUCK1_ISEN							
FLT_BUCK1_ISENSEAW Note: Hysteresis must be ≥ 0mA and small enough to current goes below the falling threshold. Current (mA) = 512mA * FLT_BUCK1_ISEN 0x0 0 0x1 510 0x4 2048 0xF 8160 3:0 FLT_BUCK1_ ISENSEWARNF R/W 0x4 Buck1 Current Sense Warning Falling Threshold Current (mA) = 510mA * FLT_BUCK1_ISEN 0x0 0 0x4							
Note: Hysteresis must be ≥ 0mĀ and small enough to current goes below the falling threshold. Current (mA) = 512mA * FLT_BUCK1_ISEN 0x0 0 0x1 510 0x4 2048 0xF 8160 3:0 FLT_BUCK1_ ISENSEWARNF R/W 0x4 Buck1 Current Sense Warning Falling Threshold Current (mA) = 510mA * FLT_BUCK1_ISEN 0x0 0 0x1 510 0x0 0x1 510mA * FLT_BUCK1_ISEN 0x4 510mA * FLT_BUCK1_ISEN 0x1 510 0x0 0x1 510							
3:0 FLT_BUCK1_ ISENSEWARNF R/W 0x4 0x4 0x1 5100 0x4 2048 0xF 8160 0x0 0 0xF 8160 0x1 510mA*FLT_BUCK1_ISEN 0xF 8160 0x1 510mA*FLT_BUCK1_ISEN 0x4 0x5 8160							
3:0 FLT_BUCK1_ ISENSEWARNF R/W 0x4 0x4 0x4 2048 0x4 2048 0xF 8160 8160 8160 3:0 FLT_BUCK1_ ISENSEWARNF R/W 0x4 Buck1 Current Sense Warning Falling Threshold 0x1 510 0x0 0 0x1 510 0x0 0 0x1 510 0x1 510							
3:0 FLT_BUCK1_ ISENSEWARNF R/W 0x4 0x4 0x4 2048 0xF 8160 0x6 0x6 0x7 510 0x8 0x7 8160 0x0 0 0x0 0 0x0 0	SENSEWARNR						
3:0 FLT_BUCK1_ ISENSEWARNF R/W 0x4 2048 0xF 8160 0xF 8160 3:0 FLT_BUCK1_ ISENSEWARNF R/W 0x4 Buck1 Current Sense Warning Falling Threshold 0xx0 0 0x0 0 0x1 510							
3:0 FLT_BUCK1_ ISENSEWARNF R/W 0x4 2048 0xF 8160 0xF 8160 3:0 FLT_BUCK1_ ISENSEWARNF R/W 0x4 Buck1 Current Sense Warning Falling Threshold 0xx0 0 0x0 0 0x1 510							
3:0 FLT_BUCK1_ ISENSEWARNF R/W 0x4 2048 0xF 8160 0xF 8160 3:0 FLT_BUCK1_ ISENSEWARNF R/W 0x4 Buck1 Current Sense Warning Falling Threshold 0x0 0 0x1 510mA * FLT_BUCK1_ISEN 0x0 0 0x1 510							
3:0 FLT_BUCK1_ ISENSEWARNF R/W 0x4 Buck1 Current Sense Warning Falling Threshold 0x0 0 0x1 510mA * FLT_BUCK1_ISEN							
3:0 FLT_BUCK1_ ISENSEWARNF R/W 0x4 Buck1 Current Sense Warning Falling Threshold 0x0 0 0x1 510mA * FLT_BUCK1_ISEN 0x1 510							
3:0 FLT_BUCK1_ ISENSEWARNF R/W 0x4 Buck1 Current Sense Warning Falling Threshold 0x0 0 0x1 510mA * FLT_BUCK1_ISEN 0x1 510							
ISENSEWARNF Buck1 Current Sense Warning Falling Threshold Current (mA) = 510mA * FLT_BUCK1_ISEN 0x0 0 0x1 510							
Current (mA) = 510mA * FLT_BUCK1_ISEN 0x0 0 0x1 510	ł						
0x0 0 0x1 510							
0xF 8160							
FLT_BUCK2_ISENSEWARN	J						
Ox5C 7:4 FLT_BUCK2_ R/W 0x5 Buck2 Current Sense Warning Rising Threshold							
INW INW <td></td>							
3:0 FLT_BUCK2_ R/W 0x4 Buck2 Current Sense Warning Falling Threshold See <u>"FLT_BUCK1_ISENSEWARNF"</u> for decode.							

10. Register Description by Address

Address	Bit	Name	R/W	Default	Description	
FLT_BUC	K1_I	SENSESHUTDN				
0x5D	7:0	FLT_BUCK1_ ISENSESHUTDN	R/W	0xA0	Buck1 Current Sense Shutdown Threshold (highest) Note: Hysteresis is accomplished by shutting down the Buck and	
					resetting the filtered I _{SENSE} value.	
					Current (mA) = 32mA * FLT_BUCK1_ISENSESHUTDN[7:0]	1
					0x00 0	
					0x01 32 * Nph	
					0x7F 4064 * Nph	
					0x80 4096 * Nph	
					0x81 4128 * Nph	
					0xA0 5120 * Nph	
					0xFF 8160 * Nph (via ENCF)	
FLT_BUC	K2_I	SENSESHUTDN	<u> </u>	I		
0x5E	7:0	FLT_BUCK2_ ISENSESHUTDN	R/W	0xA0	Buck2 Current Sense Shutdown Threshold (Highest) See <u>"FLT_BUCK1_ISENSESHUTDN"</u> for decode.	

Address	Bit	Name	R/W	Default	Description			
FLT_MAS	KTE	MP						
0x60	7	FLT_MASKBOOT	R/W	0x0	Mask IRQ for FLT_BOOT			
					0x0 IRQ passed to output pin.			
					0x1 IQ masked from output pin.			
	6:4	Reserved	R	0x0	Reserved			
	3	FLT_MASKTEMPSDR	R/W	0x0	Mask IRQ for FLT_TEMPSDR			
					0x0 IRQ passed to output pin.			
					0x1 IRQ masked from output pin.			
	2	FLT_MASKTEMPWARNR	R/W	0x0	Mask IRQ for FLT_TEMPWARNR			
					0x0 IRQ passed to output pin Note: FLT_MASKTEMPWARNF must also be set to 0x0. Otherwise the IRQ clears itself when the temperature drops below the falling threshold.			
					0x1 IRQ masked from output pin			
	1	FLT_MASKTEMPWARNF	R/W	0x0	Mask IRQ for FLT_TEMPWARNF			
					0x0 IRQ passed to output pin Note: FLT_MASKTEMPWARNR must also be set to 0x0. Otherwise the IRQ clears itself when the temperature goes above the rising threshold.			
					0x1 IRQ masked from output pin			
	0	FLT_MASKTEMPSDF	R/W	0x0				
					Mask IRQ for FLT_TEMPSDF			
					0x0 IRQ passed to output pin.			
					0x1 IQ masked from output pin.			

Address	Bit	Name	R/W	Default	Description			
FLT_MAS	KBU	CK1						
0x61	7	Reserved	d R 0x0 Reserved					
	6	FLT_BUCK1_MASKWOC	R/W	0x0				
					Mask IRQ for FLT_BUCK1_WOC			
					0x0 IRQ passed to output pin			
					0x1 IRQ masked from output pin			
	5	FLT_BUCK1_MASKOV	R/W	0x0				
					Mask IRQ for FLT_BUCK1_OV			
					0x0 IRQ passed to output pin			
					0x1 IRQ masked from output pin			
	4	FLT_BUCK1_MASKUV	R/W	0x0				
					Mask IRQ for FLT_BUCK1_UV			
					0x0 IRQ passed to output pin			
					0x1 IRQ masked from output pin			
	3	FLT_BUCK1_MASKOCSDR	R/W	0x0				
					Mask IRQ for FLT_BUCK1_OCSDR			
					0x0 IRQ passed to output pin			
					0x1 IRQ masked from output pin			
	2	FLT_BUCK1_MASKOCWR	R/W	0x0				
					Mask IRQ for FLT_BUCK1_OCWR			
					0x0 IRQ passed to output pin Note: FLT_MASKOCWF must also be set to 0x0. Otherwise the IRQ clears itself when the current drops below the falling threshold.			
					0x1 IRQ masked from output pin			
	1	FLT_BUCK1_MASKOCWF	R/W	0x0				
					Mask IRQ for FLT_BUCK1_OCWF			
					0x0 IRQ passed to output pin			
					0x1 IRQ masked from output pin			
	0	Reserved	R	0x0	Reserved			

Address	Bit	Name	R/W	Default	t Description				
FLT_MAS	KBU	СК2	1						
0x62	7	FLT_BUCK2_MASKRSVD1	R	0x0	IRQ Masks for Buck2				
	6	FLT_BUCK2_MASKWOC	R/W	0x0	See <u>"FLT_MASKBUCK1"</u> for description.				
	5	FLT_BUCK2_MASKOV	R/W	0x0					
	4	FLT_BUCK2_MASKUV	R/W	0x0					
	3	FLT_BUCK2_MASKOCSDR	R/W	0x0					
	2	FLT_BUCK2_MASKOCWR	R/W	0x0					
	1	FLT_BUCK2_MASKOCWF	R/W	0x0					
	0	FLT_BUCK2_MASKRSVD2	R	0x0					
BUCK1_E	A2		1						
0x66	7:6	BUCK1_VOUTFBDIV	R/W	0x0					
					Feedback Divider Maximum V _{OUT} Setting				
					0x0 1.2000V				
					0x1 1.5000V				
					0x2 2.0000V				
					0x3 Reserved				
		Reserved	R	0x1B	Reserved				
BUCK1_D	СМ		1						
0x69	7:3	Reserved	N/A	0x0	Reserved				
	2	BUCK1_FCCM	R/W	0x0					
					Forced Continuous Conduction Mode				
					0x0 Discontinuous Conduction Mode (DCM) allowed when load reaches 0A.				
					0x1 Always operate in Continuous Conduction Mode (CCM).				
	1:0		R/W	0x0	Reserved				
BUCK1_D		t	i						
0x72	7:0	BUCK1_DVS0VOUT92[7:0]	R/W	TRIM	Upper eight bits of a 10-bit DAC[9:0] value to generate V _{OUT} for				
					DVS Configuration 0.				
					Note: V _{OUT} must be programmed above 0.3V. FBDIV is set by factory OTP to 1x, 0.8x, 0.6x.				
					FBDIV 1.0 0.8 0.6				
					DAC V _{OUT} (V) V _{OUT} (V) V _{OUT} (V)				
					0x000 0.0000 0.0000 0.0000				
					0x001 0.0012 0.0015 0.0020				
					0x200 0.6144 0.768 1.024				
					0x201 0.6156 0.7695 1.026				
					0x3E8 1.2 1.5 2.0				

Address	Bit	Name	R/W	Default	Description
BUCK1_D	VS00	CFG0			
Configuration 0. Note: When DVS Configuration 0		Lower two bits of a 10-bit DAC[9:0] value to generate V _{OUT} for DVS Configuration 0. Note: When DVS Configuration 0 is selected (by pins or registers) any write to BUCK1_DVS0CFG0 causes a DVS ramping to occur.			
	5	RSVD	R/W	0x0	Reserved
	4:0	Reserved	R	0x0	Reserved
BUCK1_D	VS10	CFG1			
0x74	7:0	BUCK1_DVS1VOUT92	R/W	TRIM	Buck1 DVS1 Configuration 1, See <u>"BUCK1_DVS0CFG1"</u> for description
BUCK1_D	VS10	CFG0			
0x75	7:6	BUCK1_DVS1VOUT10	R/W	TRIM	Buck1 DVS1 Configuration 0, See <u>"BUCK1_DVS0CFG0"</u> for description
	5	BUCK1_DVS1DECAY	R/W	0x0	
	4:0	BUCK1_DVS1RSVD	R	0x0	
BUCK1_D	VS20	CFG1			
0x76	7:0	BUCK1_DVS2VOUT92	R/W	TRIM	Buck1 DVS2 Configuration 1, See <u>"BUCK1_DVS0CFG1"</u> for description
BUCK1_D	VS20	CFG0			
0x77	7:6	BUCK1_DVS2VOUT10	R/W	TRIM	Buck1 DVS2 Configuration 0, See "BUCK1_DVS0CFG0" for description
	5	BUCK1_DVS2DECAY	R/W	0x0	
	4:0	BUCK1_DVS2RSVD	R	0x0	
BUCK1_D	VS30	CFG1			
0x78	7:0	BUCK1_DVS3VOUT92	R/W	TRIM	Buck1 DVS3 Configuration 1, See <u>"BUCK1_DVS0CFG1"</u> for description
BUCK1_D	VS30	CFG0			
0x79	7:6	BUCK1_DVS3VOUT10	R/W	TRIM	Buck1 DVS3 Configuration 0. See <u>"BUCK1_DVS0CFG0"</u> for description
	5	BUCK1_DVS3DECAY	R/W	0x0	
	4:0	BUCK1_DVS3RSVD	R	0x0	
BUCK1_D	vss	EL			
0x7D	7:3	Reserved	R	0x00	Reserved
	2	BUCK1_DVSCTRL	R/W	0x0	
					BUCK1 DVS Control
					0x0 Use BUCK1_DVSSELECT[1:0] to select active DVS configuration.
					See Dynamic Voltage Scaling (DVS) for more detail on how to use.
	1:0	BUCK1_DVSSELECT	R/W	0x0	BUCK1 DVS Selection
					0x0 Use DVS0 voltage setting
					0x1 Use DVS1 voltage setting
					0x2 Use DVS2 voltage setting
					0x3 Use DVS3 voltage setting
					Note: When BUCK1_DVSCTRL[0] = 0x0 any write to the register BUCK1_DVSSEL causes a DVS ramping event to occur.

Address	Bit	Name	R/W	Default		D	escription				
BUCK1_R	SPC	FG1									
0x7E	7	BUCK1_RSPCFG1RSVD1	R	0x0	Reserved						
	6:4	BUCK1_RSPUP	R/W	0x7	This slew rate is voltage.	used when the o	current voltage is l	ess than the target			
					FBDIV = BUCH Slow = BUCK1	_RSPUP[1:0], R	[1:0] = (1.0, 0.8, 0	6)			
							V _{OUT} Ramp	Speed mV/µs			
					RSP	FBDIV	Fast	Slow			
					0x0	1.0	12	3			
					0x1	1.0	24	6			
					0x2	1.0	58	14			
					0x3	1.0	115	29			
							V _{OUT} Ramp	Speed mV/µs			
				RSP	FBDIV	Fast	Slow				
					0x0	0.8	12	3			
					0x1	0.8	24	6			
							V _{OUT} Ramp	Speed mV/µs			
					RSP	FBDIV	Fast	Slow			
					0x0	0.6	12	3			
					0x1	0.6	24	6			
	3	Reserved	R	0x0	Reserved						
	2:0	BUCK1_RSPDN	R/W	0x3	voltage.		current voltage is g decode information	greater than the targ n.			

Bit	Name	R/W	Default	Description						
SPC	FG0									
7	Reserved	R	0x0	Reserved	Reserved					
6:4	BUCK1_RSPPUP	R/W	0x7			current voltage is	0V and the target is			
				RSP = BUCK1 FBDIV = BUCK1 Slow = BUCK1	_RSPUP[1:0], R K1_VOUTFBDIV I_RSPUP[2] = 0	[1:0] = (1.0, 0.8, 0	.6)			
						V _{OUT} Ramp	Speed mV/µs			
				RSP	FBDIV	Fast	Slow			
				0x0	1.0	6	1.2			
				0x1	1.0	12	3			
				0x2	1.0	29	7.2			
				0x3	1.0	58	15			
						V _{OUT} Ramp	Speed mV/µs			
				RSP	FBDIV	Fast	Slow			
				0x0	0.8	12	3			
				0x1	0.8	24	6			
						V _{OUT} Ramp	Speed mV/µs			
				RSP	FBDIV	Fast	Slow			
				0x0	0.6	12	3			
				0x1	0.6	24	6			
3		R	0x0	Reserved						
	_				s used when the	current voltage is	greater than OV and th			
2.0			0.00	target voltage is 0V. See BUCK1_RSPPUP bits above for decode						
N_DI	LY									
7:6	Reserved	R	0x0	Reserved						
5:0	BUCK1_EN_DLY	R/W	0x00	Delay time from BUCK1_EN and IO_REGVAID go high to actual Buck1 V _{OUT} ramping up.						
					-	, []				
				0x00	0					
1				0x01	1ms					
				0.01						
				0x02	2ms					
				-	2ms					
	7 6:4 3 2:0 7:6	SPCFG0 7 Reserved 6:4 BUCK1_RSPPUP 8 BUCK1_RSPPUP 9 BUCK1_RSPPUP 10 BUCK1_RSPCFG0RSVD0 11 BUCK1_RSPPDN[2:0] 12 BUCK1_RSPPDN[2:0]	SPCF0 7 Reserved R 6:4 BUCK1_RSPPUP R/W 9 Superstandard State R 9 Superstandard State R 1 Superstandard State R	Image: SPCFG0 R 0x0 7 Reserved R 0x0 6:4 BUCK1_RSPPUP R/W 0x7 8 Suck1_RSPPUP R/W 0x7 9 Suck1_RSPCFGORSVD0 R 0x0 13 BUCK1_RSPPDN[2:0] R/W 0x3 13 BUCK1_RSPPDN[2:0] R/W 0x3	SPCFG0 R 0x0 Reserved 6:4 BUCK1_RSPPUP R/W 0x7 This slew rate is greater than 0V Signature Vout Ramp Signature RSP = BUCK1 FBDIV = BUCK1 FBDIV = BUCK1 R RSP 0x0 0x1 0x2 0x3 RSP 0x0 0x1 0x2 0x3 0x1 0x2 0x3 RSP 0x0 0x1 0x2 0x3 0x1 0x2 0x3 RSP 0x0 0x1 0x2 0x3 RSP 0x0 0x1 0x2 0x0 0x1 0x2 0x3 RSP 0x0 0x1 0x1 0x0 0x1 0x2 0x3 RSP 0x0 0x1 0x1 0x0 0x1 0x2 0x3 1 RSP 0x0 0x1 1 RSP 0x0 0x1 1 RSP 0x0 0x1 1 RSP 0x0 Reserved 2:0 <td>SPCFG0 7 Reserved R 0x0 Reserved 6:4 BUCK1_RSPPUP R/W 0x7 This slew rate is used when the greater than 0V. Vout_Ramp Slew Rate RSP = BUCK1_RSPUP(1:0), R RSP = BUCK1_RSPUP(2) = 0 FBDIV = BUCK1_RSPUP(2) = 0 Slow = BUCK1_RSPUP(2) = 1 RSP = BUCK1_RSPUP(2) = 1 RSP = BUCK1_RSPUP(2) = 1 RSP FBDIV 0x0 1.0 0x1 1.0 0x2 1.0 0x3 1.0 0x3 1.0 0x4 1.0 0x3 1.0 0x3 1.0 0x3 1.0 0x3 1.0 0x3 1.0 0x4 0x0 0.8 0x1 0x0 0.8 0x1 0.8 0x1 0.8 0x1 0.8 0x0 0.8 0x1 0.8 0x1 0.8 0x1 0.8 0x0 0.6 0x1 0.6 0x1 0.6 0x1 0.6 0x1 0.6 0x1 0.6 0x1 0.6 <td< td=""><td>SPCFG0 7 Reserved R 0x0 Reserved 6.4 BUCK1_RSPPUP R/W 0x7 This slew rate is used when the current voltage is greater than 0V. Vour Ramp Slew Rate RSP = BUCK1_RSPUP[10]. Ramp Speed FBDIV = BUCK1_RSPUP[2] = 0 Vour Ramp FBDIV Vour Ramp Fast 0x0 1.0 6 0x1 1.0 12 0x2 1.0 29 0x3 1.0 58 Vour Ramp RSP RSP FBDIV 0x0 1.0 6 0x1 1.0 12 0x2 1.0 29 0x3 1.0 58 Vour Ramp RSP FBDIV RSP FBDIV Fast 0x0 0.8 12 0x1 0.8 24 Vour Ramp RSP FBDIV Fast 0x0 0.6 12 0x1 0.6 24 10 3 BUCK1_RSPCFG0RSVD0 R 0x0 Reserved 3 BUCK1_RSPPDN[2:0] R/W</td></td<></td>	SPCFG0 7 Reserved R 0x0 Reserved 6:4 BUCK1_RSPPUP R/W 0x7 This slew rate is used when the greater than 0V. Vout_Ramp Slew Rate RSP = BUCK1_RSPUP(1:0), R RSP = BUCK1_RSPUP(2) = 0 FBDIV = BUCK1_RSPUP(2) = 0 Slow = BUCK1_RSPUP(2) = 1 RSP = BUCK1_RSPUP(2) = 1 RSP = BUCK1_RSPUP(2) = 1 RSP FBDIV 0x0 1.0 0x1 1.0 0x2 1.0 0x3 1.0 0x3 1.0 0x4 1.0 0x3 1.0 0x3 1.0 0x3 1.0 0x3 1.0 0x3 1.0 0x4 0x0 0.8 0x1 0x0 0.8 0x1 0.8 0x1 0.8 0x1 0.8 0x0 0.8 0x1 0.8 0x1 0.8 0x1 0.8 0x0 0.6 0x1 0.6 0x1 0.6 0x1 0.6 0x1 0.6 0x1 0.6 0x1 0.6 <td< td=""><td>SPCFG0 7 Reserved R 0x0 Reserved 6.4 BUCK1_RSPPUP R/W 0x7 This slew rate is used when the current voltage is greater than 0V. Vour Ramp Slew Rate RSP = BUCK1_RSPUP[10]. Ramp Speed FBDIV = BUCK1_RSPUP[2] = 0 Vour Ramp FBDIV Vour Ramp Fast 0x0 1.0 6 0x1 1.0 12 0x2 1.0 29 0x3 1.0 58 Vour Ramp RSP RSP FBDIV 0x0 1.0 6 0x1 1.0 12 0x2 1.0 29 0x3 1.0 58 Vour Ramp RSP FBDIV RSP FBDIV Fast 0x0 0.8 12 0x1 0.8 24 Vour Ramp RSP FBDIV Fast 0x0 0.6 12 0x1 0.6 24 10 3 BUCK1_RSPCFG0RSVD0 R 0x0 Reserved 3 BUCK1_RSPPDN[2:0] R/W</td></td<>	SPCFG0 7 Reserved R 0x0 Reserved 6.4 BUCK1_RSPPUP R/W 0x7 This slew rate is used when the current voltage is greater than 0V. Vour Ramp Slew Rate RSP = BUCK1_RSPUP[10]. Ramp Speed FBDIV = BUCK1_RSPUP[2] = 0 Vour Ramp FBDIV Vour Ramp Fast 0x0 1.0 6 0x1 1.0 12 0x2 1.0 29 0x3 1.0 58 Vour Ramp RSP RSP FBDIV 0x0 1.0 6 0x1 1.0 12 0x2 1.0 29 0x3 1.0 58 Vour Ramp RSP FBDIV RSP FBDIV Fast 0x0 0.8 12 0x1 0.8 24 Vour Ramp RSP FBDIV Fast 0x0 0.6 12 0x1 0.6 24 10 3 BUCK1_RSPCFG0RSVD0 R 0x0 Reserved 3 BUCK1_RSPPDN[2:0] R/W			

ISL91302BIK

Address	Bit	Name	R/W	Default	Description
BUCK1_S	ниті	DN_DLY			•
0x81	7:6	Reserved	R	0x0	Reserved
	5:0	BUCK1_SHUTDN_DLY	R/W	0x00	Delay time from BUCK1_EN and IO_REGVAID go low to actual Buck1 V _{OUT} ramping down. Delay = (integer value of register) ms [1ms/LSB] See <u>"BUCK1_EN_DLY"</u> for description
BUCK2_E	A2				
0x82	7:6	BUCK2_VOUTFBDIV	R/W	0x0	Buck2 FBDIV Configuration. See <u>BUCK1_EA2</u> for description
	5:0	Reserved	R	0x1B	Reserved
BUCK2_D	СМ				
0x85	7:3	Reserved	N/A	0x0	Reserved
	2	BUCK1_FCCM	R/W	0x0	
					Forced Continuous Conduction Mode
					0x0 Discontinuous Conduction Mode (DCM) allowed when load reaches 0A.
					0x1 Always operate in Continuous Conduction Mode (CCM).
	1:0	Reserved	R/W	0x0	Reserved
BUCK2_D	VSOC	CFG1			
0x8E	7:0	BUCK2_DVS0VOUT92	R/W	TRIM	See BUCK1_DVS0CFG1
BUCK2_D	VSOC	CFG0			
0x8F	7:6	BUCK2_DVS0VOUT10	R/W	TRIM	See BUCK1_DVS0CFG0
	5	BUCK2_DVS0DECAY	R/W	0x0	
	4:0	Reserved	R	0x0	
BUCK2_D	VS10	CFG1			
0x90	7:0	BUCK2_DVS1VOUT92	R/W	TRIM	See BUCK1_DVS0CFG0
BUCK2_D	VS10	CFG0			
0x91	7:6	BUCK2_DVS1VOUT10	R/W	TRIM	See BUCK1_DVS0CFG0
	5	BUCK2_DVS1DECAY	R/W	0x0	
	4:0	Reserved	R	0x0	
BUCK2_D	VS20	CFG1			
0x92	7:0	BUCK2_DVS2VOUT92[7:0]	R/W	TRIM	See BUCK1_DVS0CFG1
BUCK2_D	VS20	CFG0			
0x93	7:6	BUCK2_DVS2VOUT10	R/W	TRIM	See BUCK1_DVS0CFG0
	5	BUCK2_DVS2DECAY	R/W	0x0	
	4:0	Reserved	R	0x0	
BUCK2_D	VS30	CFG1			
0x94	7:0	BUCK2_DVS3VOUT92	R/W	TRIM	See BUCK1_DVS0CFG1
BUCK2_D	VS30	CFG0			
0x95	7:6	BUCK2_DVS3VOUT10	R/W	TRIM	See BUCK1_DVS0CFG0
	5	BUCK2_DVS3DECAY	R/W	0x0]
	4:0	Reserved	R	0x0]

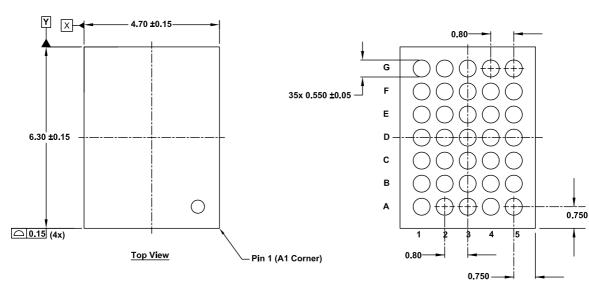
ISL91302BIK

10. Register Description by Address

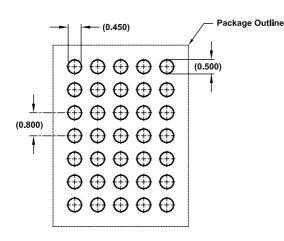
Address	Bit	Name	R/W	Default	Description
BUCK2_V	OUT	MAXMSB			
0x96	7:2	Reserved	R	0x00	Reserved
	1:0	BUCK2_VOUTMAX98[1:0]	R/W	0x3	
					Upper two bits of V _{OUT} Maximum Programming Limit
					Data format is same as BUCK2_DVS[3:0]VOUT[9:0]
BUCK2_V	Ουτ	MAXLSB	1		
0x97	7:0	BUCK2_VOUTMAXLSB[7:0]	R/W	0xFF	
					Lower byte of V _{OUT} Maximum Programming Limit
					Data format is same as BUCK2_DVS[3:0]VOUT[9:0]
BUCK2_D	VSSI	EL	1		
0x99	7:3	Reserved	R	0x00	See BUCK1_DVSSEL
	2	BUCK2_DVSCTRL	R/W	0x0	
	1:0	BUCK2_DVSSELECT	R/W	0x0	
BUCK2_F	SPC	FG1	1		
0x9A	7	Reserved	R	0x0	See BUCK1_RSPCFG1
	6:4	BUCK2_RSPUP	R/W	0x7	
	3	Reserved	R	0x0	
	2:0	BUCK2_RSPDN[2:0]	R/W	0x3	
BUCK2_R	SPC	FG0			
0x9B	7	Reserved	R	0x0	See BUCK1_RSPCFG0
	6:4	BUCK2_RSPPUP[2:0]	R/W	0x7	
	3	Reserved	R	0x0	
	2:0	BUCK2_RSPPDN[2:0]	R/W	0x3	
BUCK2_E	N_DI	Y			
0x9C	7:6	Reserved	R	0x0	See BUCK1 EN DLY
	5:0	BUCK2_EN_DLY	R/W	0x00	
BUCK2_S	ниті	DN_DLY			
0x9D	7:6	Reserved	R	0x0	See BUCK1_SHUTDN_DLY
	5:0	BUCK2_SHUTDN_DLY	R/W	0x00	

11. Revision History

Rev.	Date	Description
1.01	Feb.25.20	Removed addendum.
1.00	Dec.6.19	Rewrite throughout. Addendum added on page 61.
0.00	Jul.26.18	Initial release

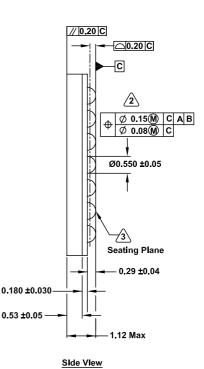


12. Package Outline Drawing


V35.4.7x6.3

35 Thin Profile Ball Grid Array Package (TFBGA) Rev 3, 10/19

For the most recent package outline drawing, see V35.4.7x6.3.


Bottom View

Typical Recommended Land Pattern

Notes:

- 1. All dimensions and tolerances conform to ASME Y14.5 2009.
- <u>(2)</u> Dimension is measured at the maximum solder ball diameter, parallel to primary datum <u>C</u>.
- A Primary datum C and seating plane are defined by the spherical crowns of the solder balls.
- 4. Unless otherwise specified, dimensions are in millimeters.

