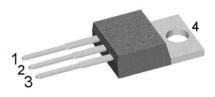
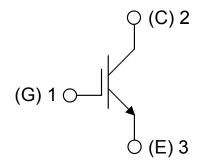
XPT IGBT

preliminary

1200 V V_{CES}


38A

V_{CE(sat)} = 1.8V


Single IGBT

Part number

IXA20I1200PB

Backside: collector

Features / Advantages:

- Easy paralleling due to the positive temperature coefficient of the on-state voltage
- Rugged XPT design (Xtreme light Punch Through) results in:
- short circuit rated for 10 µsec.
- very low gate charge
- low EMI
- square RBSOA @ 3x Ic
- Thin wafer technology combined with the XPT design results in a competitive low VCE(sat)

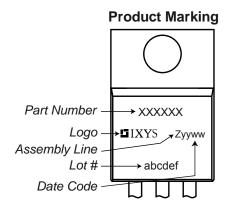
Applications:

- AC motor drives
- Solar inverter
- Medical equipment
- Uninterruptible power supply
- Air-conditioning systems
- Welding equipmentSwitched-mode and resonant-mode power supplies
- Inductive heating, cookers
- Pumps, Fans

Package: TO-220

- · Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0

preliminary


IGBT				Ratings				
Symbol	Definition		Conditions		min.	typ.	max.	Unit
V _{CES}	collector emitter voltage			$T_{VJ} = 25^{\circ}C$			1200	V
V _{GES}	max. DC gate voltage						±20	V
V_{GEM}	max. transient gate emitter voltage						±30	V
I _{C25}	collector current			$T_{\rm C} = 25^{\circ}{\rm C}$			38	Α
I _{C80}				$T_{c} = 80^{\circ}C$			22	Α
P _{tot}	total power dissipation			$T_{\rm C} = 25^{\circ}{\rm C}$			165	W
V _{CE(sat)}	collector emitter saturation voltage		I_{c} = 15A; V_{GE} = 15 V	$T_{VJ} = 25^{\circ}C$		1.8	2.1	V
				$T_{VJ} = 125$ °C		2.1		V
$V_{GE(th)}$	gate emitter threshold voltage		I_C = 0.6mA; V_{GE} = V_{CE}	$T_{VJ} = 25^{\circ}C$	5.4	5.9	6.5	V
I _{CES}	collector emitter leakage current		$V_{CE} = V_{CES}$; $V_{GE} = 0 \text{ V}$	$T_{VJ} = 25^{\circ}C$			0.1	mΑ
				$T_{VJ} = 125$ °C		0.1		mΑ
I _{GES}	gate emitter leakage current		$V_{GE} = \pm 20 \text{ V}$				500	nΑ
Q _{G(on)}	total gate charge		V_{CE} = 600 V; V_{GE} = 15 V; I_{C} =	15 A		47		nC
t _{d(on)}	turn-on delay time	$\overline{}$				70		ns
t _r	current rise time		industive lead	T - 425°C		40		ns
$t_{d(off)}$	turn-off delay time		inductive load	$T_{VJ} = 125^{\circ}C$		250		ns
t_f	current fall time		$V_{CE} = 600 \text{ V}; I_{C} = 15 \text{ A}$			100		ns
E _{on}	turn-on energy per pulse		$V_{GE} = \pm 15 \text{ V}; R_G = 56 \Omega$			1.65		mJ
E_{off}	turn-off energy per pulse	J				1.7		mJ
RBSOA	reverse bias safe operating area	7	$V_{GE} = \pm 15 \text{ V}; R_{G} = 56 \Omega$	T _{VJ} = 125°C				
I _{CM}			$V_{CEmax} = 1200 V$				45	Α
SCSOA	short circuit safe operating area	7	V _{CEmax} = 900 V					
tsc	short circuit duration	>	$V_{CE} = 900 \text{ V}; V_{GE} = \pm 15 \text{ V}$	$T_{VJ} = 125$ °C			10	μs
I _{sc}	short circuit current	J	R_G = 56 Ω ; non-repetitive			60		Α
R _{thJC}	thermal resistance junction to case						0.76	K/W
R _{thCH}	thermal resistance case to heatsink					0.50		K/W

preliminary

Package TO-220			Ratings			
Symbol	Definition	Conditions	min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal			35	Α
T _{VJ}	virtual junction temperature		-40		150	°C
T _{op}	operation temperature		-40		125	°C
T _{stg}	storage temperature		-40		150	°C
Weight				2		g
M _D	mounting torque		0.4		0.6	Nm
F _c	mounting force with clip		20		60	Ν

Part number

I = IGBT X = XPT IGBT A = Gen 1 / std

20 = Current Rating [A]

I = Single IGBT

1200 = Reverse Voltage [V] PB = TO-220AB (3)

Ordering	Part Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	IXA20I1200PB	IXA20I1200PB	Tube	50	507929

Similar Part	Package	Voltage class
IXA20IF1200HB	TO-247AD (3)	1200

Equiv	alent Circuits for Simulation	* on die level	$T_{VJ} = 150 ^{\circ}\text{C}$
$I \rightarrow V_0$		IGBT	
V _{0 max}	threshold voltage	1.1	V
R _{0 max}	slope resistance *	86	$m\Omega$