XPT IGBT

IXA4I1200UC

preliminary

V_{ces}	=	1200 V
_{C25}	=	9A
V _{CE(sat)}	=	1.8V

Single IGBT

Part number

IXA4I1200UC

Marking on Product: X4TAU

Backside: collector

Features / Advantages:

- Easy paralleling due to the positive temperature coefficient of the on-state voltage
- Rugged XPT design (Xtreme light Punch Through) results in:
 - short circuit rated for 10 µsec.
 - very low gate charge
- low EMI
- square RBSOA @ 3x lc
- Thin wafer technology combined with the XPT design results in a competitive low VCE(sat)

Applications:

- AC motor drives
- Solar inverter
- Medical equipment
- Uninterruptible power supply
- Air-conditioning systems
- Welding equipment
- Switched-mode and resonant-mode power supplies
- Inductive heating, cookers
- Pumps, Fans

Package: TO-252 (DPak)

- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- . .

IXYS reserves the right to change limits, conditions and dimensions.

LIXYS

IXA4I1200UC

preliminary

IGBT						Ratings	;	
Symbol	Definition		Conditions		min.	typ.	max.	Unit
V _{CES}	collector emitter voltage			$T_{VJ} = 25^{\circ}C$			1200	V
V _{GES}	max. DC gate voltage						±20	V
V_{GEM}	max. transient gate emitter voltage						±30	V
I _{C25}	collector current			$T_c = 25^{\circ}C$			9	A
I _{C 100}				$T_c = 100^{\circ}C$			5	Α
P _{tot}	total power dissipation			$T_c = 25^{\circ}C$			45	W
V _{CE(sat)}	collector emitter saturation voltage		I _c = 3A; V _{GE} = 15 V	$T_{VJ} = 25^{\circ}C$		1.8	2.1	V
				$T_{v_{J}} = 125^{\circ}C$		2.1		V
$V_{GE(th)}$	gate emitter threshold voltage		I_{c} = 0.1mA; V_{GE} = V_{CE}	$T_{VJ} = 25^{\circ}C$	5.4	5.9	6.5	V
ICES	collector emitter leakage current		$V_{CE} = V_{CES}; V_{GE} = 0 V$	$T_{VJ} = 25^{\circ}C$			0.1	mA
				$T_{VJ} = 125^{\circ}C$		0.1		mA
I _{GES}	gate emitter leakage current		$V_{GE} = \pm 20 V$				500	nA
Q _{G(on)}	total gate charge		V_{CE} = 600 V; V_{GE} = 15 V; I_{C} =	3 A		12		nC
t _{d(on)}	turn-on delay time)				70		ns
tr	current rise time			T 405°O		40		ns
t _{d(off)}	turn-off delay time			$I_{VJ} = 125^{\circ}C$		250		ns
t _f	current fall time	ſ	$V_{CE} = 600V; I_C = 3A$			100		ns
Eon	turn-on energy per pulse		$V_{GE} = \pm 15 \text{ V}; \text{ R}_{G} = 330 \Omega$			0.4		mJ
E _{off}	turn-off energy per pulse	J				0.3		mJ
RBSOA	reverse bias safe operating area	٦	V_{GE} = ±15 V; R_{G} =330 Ω	$T_{VJ} = 125^{\circ}C$				
I _{CM}		ſ	$V_{CEmax} = 1200 V$				9	A
SCSOA	short circuit safe operating area	٦	V _{CEmax} = 900 V					
t _{sc}	short circuit duration	}	$V_{CE} = 900 \text{ V}; V_{GE} = \pm 15 \text{ V}$	$T_{v_{J}} = 125^{\circ}C$			10	μs
l _{sc}	short circuit current	J	R_{g} = 330 Ω ; non-repetitive			12		Α
R _{thJC}	thermal resistance junction to case						2.7	K/W
R _{thCH}	thermal resistance case to heatsink					0.50		K/W

IXYS reserves the right to change limits, conditions and dimensions.

20120917

IXA4I1200UC

preliminary

Package TO-252 (DPak)			Ratings			
Symbol	Definition	Conditions	min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal			20	A
T _{vJ}	virtual junction temperature		-40		150	°C
T _{op}	operation temperature		-40		125	°C
T _{stg}	storage temperature		-40		150	°C
Weight				0.3		g
F _c	mounting force with clip		20		60	N

Product Marking

Part number

I = IGBT	
----------	--

X = XPT IGBT A = Gen 1 / std

4 = Current Rating [A]

I = Single IGBT

1200 = Reverse Voltage [V] UC = TO-252AA (DPak)

Ordering	Part Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	IXA4I1200UC	X4TAU			

Equiva	lent Circuits for Simulation	* on die level	T _{vJ} = 150 °C
	- <u>R₀</u> -	IGBT	
V _{0 max}	threshold voltage	1.1	V
R _{0 max}	slope resistance *	460	mΩ

IXYS reserves the right to change limits, conditions and dimensions.