

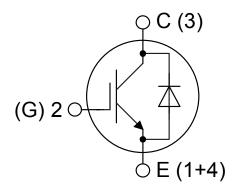
XPT IGBT

1200 V V_{CFS}

I _{C25} 88A

V_{CE(sat)} = 1.8V

Copack


Part number

IXA60IF1200NA

Backside: isolated

Features / Advantages:

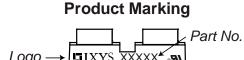
- Easy paralleling due to the positive temperature coefficient of the on-state voltage
- Rugged XPT design (Xtreme light Punch Through) results in:
 - short circuit rated for 10 µsec.
 - very low gate charge
 - low EMI
 - square RBSOA @ 3x Ic
- Thin wafer technology combined with the XPT design results in a competitive low VCE(sat)
- SONIC™ diode
 - fast and soft reverse recovery
 - low operating forward voltage

Applications:

- AC motor drives
- Solar inverter
- Medical equipment
- Uninterruptible power supply
- Air-conditioning systems
- Welding equipmentSwitched-mode and resonant-mode power supplies
- Inductive heating, cookers
- Pumps, Fans

Package: SOT-227B (minibloc)

- Isolation Voltage: 3000 V~
- Industry standard outlineRoHS compliant
- Epoxy meets UL 94V-0
- Base plate: Copper internally DCB isolated
- Advanced power cycling
- Either emitter terminal can be used as main or Kelvin emitter



IGBT					Ratings	5 I	1
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{CES}	collector emitter voltage		$T_{VJ} = 25^{\circ}C$			1200	V
$V_{\sf GES}$	max. DC gate voltage					±20	٧
V_{GEM}	max. transient gate emitter voltage					±30	V
I _{C25}	collector current		$T_C = 25^{\circ}C$			88	Α
I _{C80}			$T_{c} = 80^{\circ}C$			56	Α
P _{tot}	total power dissipation		$T_C = 25^{\circ}C$			290	W
V _{CE(sat)}	collector emitter saturation voltage	$I_{C} = 50A; V_{GE} = 15 V$	$T_{VJ} = 25^{\circ}C$		1.8	2.1	٧
			$T_{VJ} = 125$ °C		2.1		٧
V _{GE(th)}	gate emitter threshold voltage	$I_C = 2mA; V_{GE} = V_{CE}$	$T_{VJ} = 25^{\circ}C$	5.4	5.9	6.5	٧
I _{CES}	collector emitter leakage current	$V_{CE} = V_{CES}$; $V_{GE} = 0 \text{ V}$	$T_{VJ} = 25^{\circ}C$			0.1	mA
			$T_{VJ} = 125$ °C		0.1		mA
I _{GES}	gate emitter leakage current	$V_{GE} = \pm 20 \text{ V}$				500	nA
Q _{G(on)}	total gate charge	$V_{CE} = 600 \text{ V}; V_{GE} = 15 \text{ V}; I_{C} =$	50 A		190		nC
t _{d(on)}	turn-on delay time)			70		ns
tr	current rise time				40		ns
t _{d(off)}	turn-off delay time	inductive load	$T_{VJ} = 125^{\circ}C$		250		ns
t _f	current fall time	$V_{CE} = 600 \text{ V}; I_{C} = 50 \text{ A}$			100		ns
E _{on}	turn-on energy per pulse	$V_{GE} = \pm 15 \text{ V}; R_{G} = 15 \Omega$			4.5		mJ
E _{off}	turn-off energy per pulse	J			5.5		mJ
RBSOA	reverse bias safe operating area	$V_{GE} = \pm 15 \text{ V}; R_{G} = 15 \Omega$	T _{VJ} = 125°C				
I _{CM}		V _{CEmax} = 1200V				150	Α
SCSOA	short circuit safe operating area	V _{CEmax} = 1200 V					
tsc	short circuit duration	$V_{CE} = 900 \text{ V}; V_{GE} = \pm 15 \text{ V}$	T _{VJ} = 125°C			10	μs
I _{sc}	short circuit current	$R_{\rm G}$ = 15 Ω; non-repetitive			200		Α
R _{thJC}	thermal resistance junction to case	· · · · · · · · · · · · · · · · · · ·				0.43	K/W
R _{thCH}	thermal resistance case to heatsink				0.10		K/W
Diode							
V_{RRM}	max. repetitive reverse voltage		$T_{VJ} = 25^{\circ}C$			1200	٧
I _{F25}	forward current		$T_C = 25^{\circ}C$			85	Α
I _{F80}			$T_C = 80^{\circ}C$			51	Α
V _F	forward voltage	I _F = 60A	$T_{VJ} = 25^{\circ}C$			2.20	٧
			$T_{VJ} = 125^{\circ}C$		1.95		٧
I _R	reverse current	$V_R = V_{RRM}$	$T_{VJ} = 25^{\circ}C$			*	mA
	* not applicable, see Ices at IGBT		$T_{VJ} = 125^{\circ}C$		*		mA
Q _{rr}	reverse recovery charge)			8		μC
I _{RM}	max. reverse recovery current	V _R = 600 V			60		Α
t _{rr}	reverse recovery time	$-di_{F}/dt = E+03 A/\mu s$ $I_{F} = 60A; V_{GE} = 0 V$	$T_{VJ} = 125^{\circ}C$		350		ns
E _{rec}	reverse recovery energy	$\int I_F = 60A; V_{GE} = 0 V$			2.5		mJ
R _{thJC}	thermal resistance junction to case					0.6	K/W
R _{thCH}	thermal resistance case to heatsink				0.10		K/W

Package	Package SOT-227B (minibloc)			Ratings				
Symbol	Definition	Conditions			min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal 1)					150	Α
T _{VJ}	virtual junction temperature	e			-40		150	°C
T _{op}	operation temperature				-40		125	°C
T _{stg}	storage temperature				-40		150	°C
Weight						30		g
M _D	mounting torque				1.1		1.5	Nm
$\mathbf{M}_{_{\mathbf{T}}}$	terminal torque				1.1		1.5	Nm
d _{Spp/App}	creepage distance on surface striking distance through air		terminal to terminal	10.5	3.2			mm
d _{Spb/Apb}	creepage distance on suna	ace striking distance through all	terminal to backside	8.6	6.8			mm
V _{ISOL}	isolation voltage	t = 1 second	50/60 Hz, RMS; I _{ISOL} ≤ 1 mA		3000			V
		t = 1 minute			2500			V

¹⁾ l_{nusc} is typically limited by the pin-to-chip resistance (1); or by the current capability of the chip (2). In case of (1) and a product with multiple pins for one chip-potential, the current capability can be increased by connecting the pins as one contact.

Logo → □IXYS XXXXX → PA Zyyww abcd Assembly Line ↑ ↑ Assembly Code

Part description

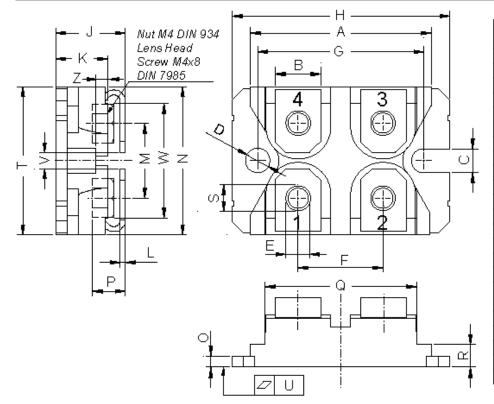
I = IGBT X = XPT IGBT

A = Gen 1 / std

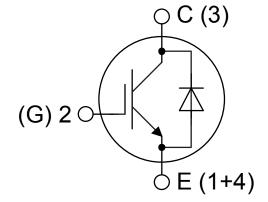
60 = Current Rating [A]

IF = Copack

1200 = Reverse Voltage [V] NA = SOT-227B (minibloc)


Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	IXA60IF1200NA	IXA60IF1200NA	Tube	10	508765

Similar Part	Package	Voltage class
IXA70I1200NA	SOT-227B (minibloc)	1200


Equiva	alent Circuits for Simulation	* on die level		T _{VJ} = 15	50 °C
$I \rightarrow V_0$)- <u>R</u> _		IGBT	Diode	
V _{0 max}	threshold voltage		1.1	1.25	V
R _{0 max}	slope resistance *		28	14.2	$m\Omega$

Outlines SOT-227B (minibloc)

Dim.	Millimeter		Inches		
DIIII.	min	max	min	max	
Α	31.50	31.88	1.240	1.255	
В	7.80	8.20	0.307	0.323	
С	4.09	4.29	0.161	0.169	
D	4.09	4.29	0.161	0.169	
Е	4.09	4.29	0.161	0.169	
F	14.91	15.11	0.587	0.595	
G	30.12	30.30	1.186	1.193	
Н	37.80	38.23	1.488	1.505	
٦	11.68	12.22	0.460	0.481	
K	8.92	9.60	0.351	0.378	
L	0.74	0.84	0.029	0.033	
M	12.50	13.10	0.492	0.516	
Ν	25.15	25.42	0.990	1.001	
0	1.95	2.13	0.077	0.084	
Р	4.95	6.20	0.195	0.244	
Q	26.54	26.90	1.045	1.059	
R	3.94	4.42	0.155	0.167	
S	4.55	4.85	0.179	0.191	
Т	24.59	25.25	0.968	0.994	
U	-0.05	0.10	-0.002	0.004	
V	3.20	5.50	0.126	0.217	
W	19.81	21.08	0.780	0.830	
Z	2.50	2.70	0.098	0.106	

IGBT

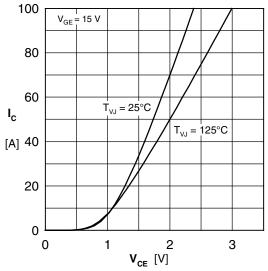


Fig. 1 Typ. output characteristics

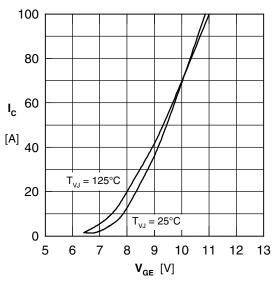


Fig. 3 Typ. tranfer characteristics

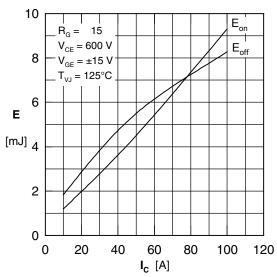


Fig. 5 Typ. switching energy vs. collector current

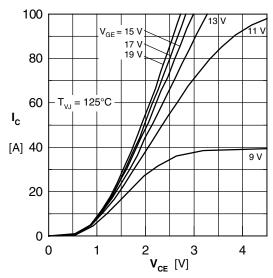


Fig. 2 Typ. output characteristics

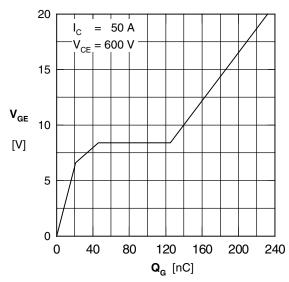


Fig. 4 Typ. turn-on gate charge

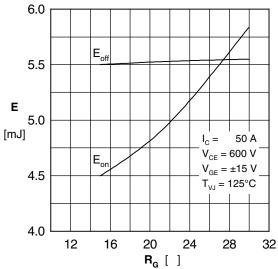


Fig. 6 Typ. switching energy vs. gate resistance