

VOIDLESS HERMETICALLY SEALED SWITCHING DIODES

Qualified per MIL-PRF-19500/578

Qualified Levels: JAN, JANTX, JANTXV and JANS

DESCRIPTION

This popular surface mount equivalent JEDEC registered switching/signal diodes are military qualified and available with internal metallurgical bonded construction. These small low capacitance diodes with very fast switching speeds are hermetically sealed and bonded into a "D-5D" package. They may be used in a variety of fast switching applications including computers and peripheral equipment such as magnetic cores, thin-film memories, plated-wire memories, as well as decoding or encoding applications, etc. Microsemi also offers a variety of other switching/signal diodes.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered surface mount equivalents of 1N6638, 1N6642, and 1N6643.
- Ultra fast recovery time.
- Very low capacitance.
- · Metallurgically bonded.
- Non-cavity glass package.
- JAN, JANTX, JANTXV and JANS qualifications are available per MIL-PRF-19500/578.
- Replacements for 1N4148UR, 1N4148UR-1, 1N4150UR-1, and 1N914UR.
- RoHS compliant devices available (commercial grade only).

APPLICATIONS / BENEFITS

- Small size for high density mounting (see package illustration).
- Ideal for:

High frequency data lines

RS-232 & RS-422 Interface Networks

Ethernet: 10 Base T Switching core drivers

LAN Computers

MAXIMUM RATINGS @ T_A = +25 °C unless otherwise noted.

Parameters/Test Conditions	Symbol	Value	Unit	
Junction and Storage Temp	T _J and T _{STG}	-65 to +175	°C	
Thermal Resistance Junction-to-End	$R_{\Theta JEC}$	40	°C/W	
Thermal Resistance Junction-to-Amb	R _{OJA}	250	°C/W	
Peak Forward Surge Current @ T _A = (Test pulse = 8.3 ms, half-sine wave.)	I _{FSM}	2.5	Α	
Average Rectified Forward Current @ (Derate at 4.6 mA/°C Above T _{EC} = +	Io	300	mA	
Breakdown Voltage:	1N6638US 1N6642US 1N6643US	V _{BR}	150 100 75	V
Working Peak Reverse Voltage:	1N6638US 1N6642US	V _{RWM}	125 75	V
	1N6643US		50	

NOTES: 1. T_A = +75 °C on printed circuit board (PCB), PCB = FR4 - .0625 inch (1.59 mm) 1-layer 1-Oz Cu, horizontal, in still air; pads for US = .061 inch (1.55 mm) x .105 inch (2.67 mm); R_{OJA} with a defined PCB thermal resistance condition included, is measured at I_O = 300 mA.

"D" SQ-MELF (D-5D) Package

Also available in:

"D" Package
(axial-leaded)
1N6638 42 43

MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 Tel: (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Voidless hermetically sealed hard glass.
- TERMINALS: Tin-Lead plate with >3% Lead. Solder dip is available upon request.
- MARKING: Body painted and alpha numeric.
- POLARITY: Cathode indicated by band.
- Tape & Reel option: Standard per EIA-481-1-A with 12 mm tape. Consult factory for quantities.
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE JAN 1N6638 US (e3)**RoHS Compliance Reliability Level** JAN = JAN Level e3 = RoHS compliant (available JANTX = JANTX Level on commercial grade only) JANTXV = JANTXV Level Blank = non-RoHS compliant JANS = JANS Level Blank = commercial **Surface Mount Package** JEDEC type number See Electrical Characteristics

SYMBOLS & DEFINITIONS						
Symbol	Definition					
V_{BR}	Minimum Breakdown Voltage: The minimum voltage the device will exhibit at a specified current.					
V _{RWM}	Working Peak Reverse Voltage: The maximum peak voltage that can be applied over the operating temperature range.					
V _F	Maximum Forward Voltage: The maximum forward voltage the device will exhibit at a specified current.					
I _R	Maximum Reverse Current: The maximum reverse (leakage) current that will flow at the specified voltage and temperature.					
С	Capacitance: The capacitance in pF at a frequency of 1 MHz and specified voltage.					
t _{rr}	Reverse Recovery Time: The time interval between the instant the current passes through zero when changing from the forward direction to the reverse direction and a specified recovery decay point after a peak reverse current is reached.					

ELECTRICAL CHARACTERISTICS @ 25°C unless otherwise noted.

	MAXIMUM FORWARD VOLTAGE V _F @ I _F		MAXIMUM DC REVERSE CURRENT		REVERSE RECOVERY TIME t _{rr}	MAXIMUM FORWARD RECOVERY VOLTAGE AND		MAXIMUM JUNCTION CAPACITANCE f = 1 MHz			
TYPE NUMBER	1, 3, 1		I_{R1} I_{R2} I_{R3} I_{R4}		(Note 1)	TIME I _F =200mA, t _r =1ns		Vsig = 50 mV (p-p)			
			V _R = 20 V	V _R =V _{RWM}	V _R =20 V T _A = +150 °C	V _R =V _{RWM} T _A = +150 °C		V _{FRM}	t _{fr}	V _R =0 V	V _R =1.5 V
	V @ mA	V @ mA	nA	nA	μА	μА	ns	٧	ns	pf	pf
1N6638US	0.8 V @ 10 mA	1.1 V @ 200 mA	35	500	50	100	4.5	5.0	20	2.5	2.0
1N6642US	0.8 V @ 10 mA	1.2 V @ 100 mA	25	500	50	100	5.0	5.0	20	5.0	2.8
1N6643US	0.8 V @ 10 mA	1.2 V @ 100 mA	50	500	75	100	6.0	5.0	20	5.0	2.8

NOTE: 1. Reverse Recovery Time Test Conditions – $I_F = I_R = 10$ mA, $I_{R(REC)} = 1.0$ mA, C = 3 pF, $R_L = 100$ ohms.

GRAPHS

FIGURE 1
Temperature – Current Derating

FIGURE 2 Maximum Thermal Impedance at $T_A = 55$ °C

GRAPHS (continued)

FIGURE 3 Maximum Thermal Impedance at T_{EC} = 25 $^{\circ}C$