VOIDLESS HERMETICALLY SEALED SWITCHING DIODES Qualified per MIL-PRF-19500/578 Qualified Levels: JAN, JANTX, JANTXV and JANS #### DESCRIPTION This popular surface mount equivalent JEDEC registered switching/signal diodes are military qualified and available with internal metallurgical bonded construction. These small low capacitance diodes with very fast switching speeds are hermetically sealed and bonded into a "D-5D" package. They may be used in a variety of fast switching applications including computers and peripheral equipment such as magnetic cores, thin-film memories, plated-wire memories, as well as decoding or encoding applications, etc. Microsemi also offers a variety of other switching/signal diodes. Important: For the latest information, visit our website http://www.microsemi.com. #### **FEATURES** - JEDEC registered surface mount equivalents of 1N6638, 1N6642, and 1N6643. - Ultra fast recovery time. - Very low capacitance. - · Metallurgically bonded. - Non-cavity glass package. - JAN, JANTX, JANTXV and JANS qualifications are available per MIL-PRF-19500/578. - Replacements for 1N4148UR, 1N4148UR-1, 1N4150UR-1, and 1N914UR. - RoHS compliant devices available (commercial grade only). #### **APPLICATIONS / BENEFITS** - Small size for high density mounting (see package illustration). - Ideal for: High frequency data lines RS-232 & RS-422 Interface Networks Ethernet: 10 Base T Switching core drivers LAN Computers ## MAXIMUM RATINGS @ T_A = +25 °C unless otherwise noted. | Parameters/Test Conditions | Symbol | Value | Unit | | |--|-------------------------------------|------------------|------------------|---| | Junction and Storage Temp | T _J and T _{STG} | -65 to +175 | °C | | | Thermal Resistance Junction-to-End | $R_{\Theta JEC}$ | 40 | °C/W | | | Thermal Resistance Junction-to-Amb | R _{OJA} | 250 | °C/W | | | Peak Forward Surge Current @ T _A = (Test pulse = 8.3 ms, half-sine wave.) | I _{FSM} | 2.5 | Α | | | Average Rectified Forward Current @ (Derate at 4.6 mA/°C Above T _{EC} = + | Io | 300 | mA | | | Breakdown Voltage: | 1N6638US
1N6642US
1N6643US | V _{BR} | 150
100
75 | V | | Working Peak Reverse Voltage: | 1N6638US
1N6642US | V _{RWM} | 125
75 | V | | | 1N6643US | | 50 | | NOTES: 1. T_A = +75 °C on printed circuit board (PCB), PCB = FR4 - .0625 inch (1.59 mm) 1-layer 1-Oz Cu, horizontal, in still air; pads for US = .061 inch (1.55 mm) x .105 inch (2.67 mm); R_{OJA} with a defined PCB thermal resistance condition included, is measured at I_O = 300 mA. "D" SQ-MELF (D-5D) Package Also available in: "D" Package (axial-leaded) 1N6638 42 43 #### MSC – Lawrence 6 Lake Street, Lawrence, MA 01841 1-800-446-1158 Tel: (978) 620-2600 Fax: (978) 689-0803 #### MSC - Ireland Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298 #### Website: www.microsemi.com #### **MECHANICAL and PACKAGING** - CASE: Voidless hermetically sealed hard glass. - TERMINALS: Tin-Lead plate with >3% Lead. Solder dip is available upon request. - MARKING: Body painted and alpha numeric. - POLARITY: Cathode indicated by band. - Tape & Reel option: Standard per EIA-481-1-A with 12 mm tape. Consult factory for quantities. - See <u>Package Dimensions</u> on last page. #### **PART NOMENCLATURE** JAN 1N6638 US (e3)**RoHS Compliance Reliability Level** JAN = JAN Level e3 = RoHS compliant (available JANTX = JANTX Level on commercial grade only) JANTXV = JANTXV Level Blank = non-RoHS compliant JANS = JANS Level Blank = commercial **Surface Mount Package** JEDEC type number See Electrical Characteristics | SYMBOLS & DEFINITIONS | | | | | | | |-----------------------|--|--|--|--|--|--| | Symbol | Definition | | | | | | | V_{BR} | Minimum Breakdown Voltage: The minimum voltage the device will exhibit at a specified current. | | | | | | | V _{RWM} | Working Peak Reverse Voltage: The maximum peak voltage that can be applied over the operating temperature range. | | | | | | | V _F | Maximum Forward Voltage: The maximum forward voltage the device will exhibit at a specified current. | | | | | | | I _R | Maximum Reverse Current: The maximum reverse (leakage) current that will flow at the specified voltage and temperature. | | | | | | | С | Capacitance: The capacitance in pF at a frequency of 1 MHz and specified voltage. | | | | | | | t _{rr} | Reverse Recovery Time: The time interval between the instant the current passes through zero when changing from the forward direction to the reverse direction and a specified recovery decay point after a peak reverse current is reached. | | | | | | ### **ELECTRICAL CHARACTERISTICS** @ 25°C unless otherwise noted. | | MAXIMUM
FORWARD
VOLTAGE
V _F @ I _F | | MAXIMUM DC REVERSE CURRENT | | REVERSE
RECOVERY
TIME
t _{rr} | MAXIMUM
FORWARD
RECOVERY
VOLTAGE AND | | MAXIMUM JUNCTION CAPACITANCE f = 1 MHz | | | | |----------------|--|----------------|-------------------------------------|----------------------------------|---|---|-----|--|-----------------|---------------------|-----------------------| | TYPE
NUMBER | 1, 3, 1 | | I_{R1} I_{R2} I_{R3} I_{R4} | | (Note 1) | TIME
I _F =200mA, t _r =1ns | | Vsig = 50 mV
(p-p) | | | | | | | | V _R =
20 V | V _R =V _{RWM} | V _R =20 V
T _A =
+150 °C | V _R =V _{RWM} T _A = +150 °C | | V _{FRM} | t _{fr} | V _R =0 V | V _R =1.5 V | | | V @ mA | V @ mA | nA | nA | μА | μА | ns | ٧ | ns | pf | pf | | 1N6638US | 0.8 V @ 10 mA | 1.1 V @ 200 mA | 35 | 500 | 50 | 100 | 4.5 | 5.0 | 20 | 2.5 | 2.0 | | 1N6642US | 0.8 V @ 10 mA | 1.2 V @ 100 mA | 25 | 500 | 50 | 100 | 5.0 | 5.0 | 20 | 5.0 | 2.8 | | 1N6643US | 0.8 V @ 10 mA | 1.2 V @ 100 mA | 50 | 500 | 75 | 100 | 6.0 | 5.0 | 20 | 5.0 | 2.8 | **NOTE:** 1. Reverse Recovery Time Test Conditions – $I_F = I_R = 10$ mA, $I_{R(REC)} = 1.0$ mA, C = 3 pF, $R_L = 100$ ohms. ### **GRAPHS** FIGURE 1 Temperature – Current Derating FIGURE 2 Maximum Thermal Impedance at $T_A = 55$ °C ## **GRAPHS** (continued) FIGURE 3 Maximum Thermal Impedance at T_{EC} = 25 $^{\circ}C$