

LOW POWER NPN SILICON TRANSISTOR

Qualified per MIL-PRF-19500/391

Qualified Levels: JAN, JANTX, JANTXV, and JANS

DESCRIPTION

This 2N3057A NPN leaded silicon transistor device is military qualified for high-reliability applications. Microsemi also offers numerous other transistor products to meet higher and lower power ratings with various switching speed requirements in both through-hole and surface-mount packages.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N3057 number.
- JAN, JANTX, JANTXV and JANS qualifications are available per MIL-PRF-19500/391.
- Rad hard levels are also available per MIL-PRF-19500/391.
 (For RHA datasheet see <u>JANSD2N3057A</u>.)
- RoHS compliant by design.

APPLICATIONS / BENEFITS

- Low profile metal TO-46 leaded package.
- · Light weight.
- General-purpose switching and amplifier applications.
- Military and high-reliability applications.

TO-46 (TO-206AB) Package

Also available in:

TO-39 (TO-205AD)

(short-leaded) 2N3019S

<u> 21430193</u>

TO-5 package (long-leaded)

TO-18 (TO-206AA)

(leaded) 2N3700

UB package

(surface mount)

2N3700UB

MAXIMUM RATINGS @ T_A = +25 °C unless otherwise noted.

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	T _J and T _{STG}	-65 to +200	°C
Thermal Impedance Junction-to-Ambient	R _{OJA}	325	°C/W
Thermal Impedance Junction-to-Case	Rejc	80	°C/W
Collector-Emitter Voltage	V_{CEO}	80	V
Collector-Base Voltage	V_{CBO}	140	V
Emitter-Base Voltage	V_{EBO}	7.0	V
Collector Current	Ic	1.0	Α
Total Power Dissipation: @ $T_A = +25$ °C (1) @ $T_C = +25$ °C (2)	P _D	0.5	W
@ $T_C = +25 {}^{\circ}C^{(2)}$		1.8	

Notes: 1. Derate linearly 2.3 mW/°C for $T_A \ge +25$ °C.

2. Derate linearly 10.3 mW/°C for $T_C \ge +25$ °C.

MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Low profile nickel cap.
- TERMINALS: Gold over nickel plated kovar leads. Solder dip (Sn63/Pb37) available upon request. NOTE: Solder dip will eliminate RoHS compliance.
- MARKING: Part number, date code, manufacturer's ID and serial number.
- WEIGHT: Approximately 0.234 grams.
- See Package Dimensions on last page.

JAN 2N3057A Reliability Level JAN = JAN level JANTX = JANTX level JANTXV = JANTXV level JANS = JANS level Blank = Commercial

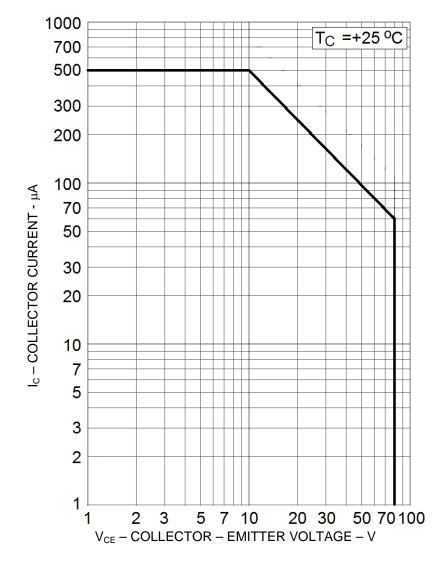
	SYMBOLS & DEFINITIONS		
Symbol	Definition		
f	Frequency		
I _B	Base current (dc)		
I _E	Emitter current (dc)		
T _A	Ambient temperature		
T _C	Case temperature		
V _{CB}	Collector to base voltage (dc)		
V _{CE}	Collector to emitter voltage (dc)		
V_{EB}	Emitter to base voltage (dc)		

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS	•	•		•
Collector-Emitter Breakdown Current $I_C = 30 \text{ mA}$	V _{(BR)CEO}	80		V
Collector-Base Cutoff Current V _{CB} = 140 V	I _{CBO}		10	μA
Emitter-Base Cutoff Current $V_{EB} = 7 \text{ V}$	I _{EBO1}		10	μA
Collector-Emitter Cutoff Current V _{CE} = 90 V	I _{CES}		10	ηΑ
Emitter-Base Cutoff Current $V_{EB} = 5.0 \text{ V}$	I _{EBO2}		10	ηА
ON CHARACTERISTICS				
Forward-Current Transfer Ratio				
$I_{C} = 150 \text{ mA}, V_{CE} = 10 \text{ V}$ $I_{C} = 0.1 \text{ mA}, V_{CE} = 10 \text{ V}$ $I_{C} = 10 \text{ mA}, V_{CE} = 10 \text{ V}$ $I_{C} = 500 \text{ mA}, V_{CE} = 10 \text{ V}$ $I_{C} = 1.0 \text{ A}, V_{CE} = 10 \text{ V}$	h _{FE}	100 50 90 50 15	300 300 300	
Collector-Emitter Saturation Voltage $I_C = 150$ mA, $I_B = 15$ mA $I_C = 500$ mA, $I_B = 50$ mA	V _{CE(sat)}		0.2 0.5	V
Base-Emitter Saturation Voltage $I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$	V _{BE(sat)}		1.1	V

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Small-Signal Short-Circuit Forward Current Transfer Ratio I_C = 1.0 mA, V_{CE} = 5.0 V, f = 1.0 kHz	h _{fe}	80	400	
Magnitude of Small-Signal Short-Circuit Forward Current Transfer Ratio $I_C = 50$ mA, $V_{CE} = 10$ V, $f = 20$ MHz	h _{fe}	5.0	20	
Output Capacitance $V_{CB} = 10 \text{ V}, I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	C _{obo}		12	pF
Input Capacitance $V_{EB} = 0.5 \text{ V}, I_{C} = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	C _{ibo}		60	pF



ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted (continued)

SAFE OPERATION AREA (See SOA graph below and MIL-STD-750, method 3053)

DC Tests T _C = 25 °C, 1 cycle, t = 10 ms	
Test 1	$V_{CE} = 10 \text{ V}$ $I_{C} = 180 \text{ mA}$
Test 2	$V_{CE} = 40 \text{ V}$ $I_C = 45 \text{ mA}$
Test 3	$V_{CE} = 80 \text{ V}$ $I_{C} = 22.5 \text{ mA}$

(1) Pulse Test: Pulse Width = 300 μ s, duty cycle \leq 2.0%.

Maximum Safe Operating Area

GRAPHS

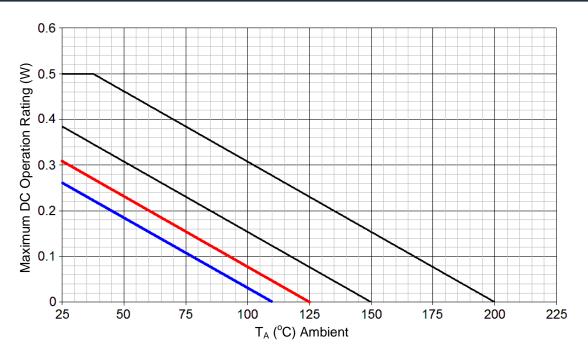


FIGURE 1
Temperature-Power Derating ($R_{\Theta JA}$)
Leads = .125 inch (3.175mm)

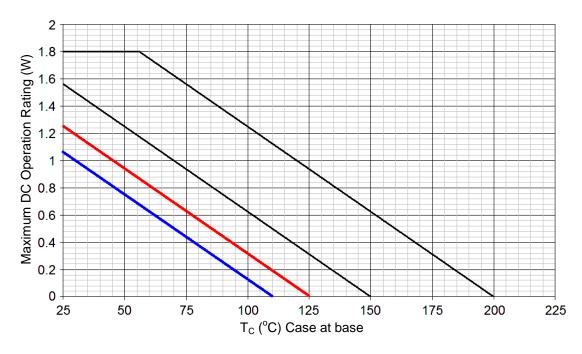


FIGURE 2
Temperature-Power Derating (R_{OJC})