

JANS 2N5152U3 and JANS 2N5154U3

RADIATION HARDENED NPN POWER SILICON TRANSISTOR Qualified per MIL-PRF-19500/544

DESCRIPTION

These RHA level 2N5152U3 and 2N5154U3 silicon transistor devices are military Radiation Hardness Assurance qualified up to a JANSF level for high-reliability applications. Microsemi also offers numerous other products to meet higher and lower power voltage regulation applications.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N5152 and 2N5154.
- JANS RHA qualifications are available per MIL-PRF-19500/544.

APPLICATIONS / BENEFITS

- High frequency operation.
- Lightweight.
- High-speed power-switching applications.
- High-reliability applications.

MAXIMUM RATINGS

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	T_J and T_{STG}	-65 to +200	°C
Thermal Resistance Junction-to-Ambient	R _{eja}	175	°C/W
Thermal Resistance Junction-to-Case	R _{ejc}	10	°C/W
Reverse Pulse Energy ⁽¹⁾		15	mJ
Collector Current (dc)	Ιc	2	А
Collector to base voltage (static), emitter open	V _{CBO}	100	V
Collector to emitter voltage (static) base open	V _{CEO}	80	V
Emitter to base voltage (static) collector open	V _{EBO}	5.5	V
Steady-State Power Dissipation @ T _A = +25 °C	PD	1	W
Steady-State Power Dissipation @ T _C = +25 °C	PD	10	W

Notes: 1. This rating is based on the capability of the transistors to operate safely in the unclamped inductive load energy test circuit.

<u>Qualified Levels</u>: JANSM, JANSD, JANSP, JANSL, JANSR, JANSF

U3 (SMD-0.5) Package

Also available in:

D-5 Package (long-leaded) JANS_2N5152L & JANS_2N5152L &

TO-39 Package (leaded) JANS_2N5152 & JANS_2N5154

MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC – Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

JANS 2N5152U3 and JANS 2N5154U3

MECHANICAL and PACKAGING

- CASE: Ceramic and gold over nickel plated steel.
- TERMINALS: Gold over nickel plated tungsten/copper.
- MARKING: Part number, date code, A = anode.
- POLARITY: See <u>schematic</u> on last page.
- WEIGHT: 0.9 grams.
- See Package Dimensions on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS				
Symbol	Definition			
C _{obo}	Common-base open-circuit output capacitance.			
I _{CEO}	Collector cutoff current, base open.			
I _{CEX}	Collector cutoff current, circuit between base and emitter.			
I _{EBO}	Emitter cutoff current, collector open.			
h _{FE}	Common-emitter static forward current transfer ratio.			
V _{CEO}	Collector-emitter voltage, base open.			
V _{CBO}	Collector-emitter voltage, emitter open.			
V _{EBO}	Emitter-base voltage, collector open.			

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C unless otherwise noted.

OFF CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Collector-Emitter Breakdown Voltage	V	80		
$I_{\rm C} = 100 \text{ mA}, I_{\rm B} = 0$	V (BR)CEO	00		V
Emitter-Base Cutoff Current			10	
$V_{EB} = 4.0 \text{ V}, I_{C} = 0$	I _{EBO}		1.0	μA
$V_{EB} = 5.5 \text{ V}, I_{C} = 0$			1.0	ШA
Collector-Emitter Cutoff Current			1.0	
$V_{CE} = 60 \text{ V}, \text{ V}_{BE} = 0$	I _{CES}		1.0	μA
$V_{CE} = 100 \text{ V}, \text{ V}_{BE} = 0$			1.0	ШA
Collector-Emitter Cutoff Current			50	
$V_{CE} = 40 \text{ V}, \text{ I}_{B} = 0$	ICEO		50	μΑ

ON CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Forward-Current Transfer Ratio					
I _C = 50 mA, V _{CE} = 5 V	2N5152U3		20		
	2N5154U3		50		
I _C = 2.5 A, V _{CE} = 5 V	2N5152U3	h _{FE}	30	90	
	2N5154U3		70	200	
$I_{C} = 5A, V_{CE} = 5V$	2N5152U3		20		
	2N5154U3		40		
Collector-Emitter Saturation Voltage				0.75	
I _C = 2.5 A, I _B = 250 mA		V _{CE(sat)}		1.5	V
I _C = 5.0 A, I _B = 500 mA		. ,		1.5	
Base-Emitter Voltage Non-Saturation		V		1 15	V
I _C = 2.5 A, V _{CE} = 5 V		V BE		1.45	v
Base-Emitter Saturation Voltage				1 15	
I _C = 2.5 A, I _B = 250 mA		V _{BE(sat)}		2.40	V
I _C = 5.0 A, I _B = 500 mA		. ,		۷.۷	

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Magnitude of Common Emitter Small-Signal Short-					
Circuit Forward Current Transfer Ratio	2N5152U3 2N5154U3	h _{fe}	6		
I _C = 500 mA, V _{CE} = 5 V, f = 10 MHz			/		
Small-signal short Circuit Forward-Cu	rrent				
Transfer Ratio	2N5152U3	h _{fe}	20		
I _C = 100 mA, V _{CE} = 5 V, f = 1 KHz	2N5154U3		50		
Output Capacitance $V_{CB} = 10 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$		C _{obo}		250	pF

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C unless otherwise noted. (continued)

SWITCHING CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Turn-On Time $I_{C} = 5 A$, $I_{B1} = 500 mA$	t _{on}		0.5	μs
Turn-Off Time $R_{L} = 6\Omega$	t _{off}		1.5	μs
Storage Time I _{B2} = -500 mA	t _s		1.4	μs
Fall Time V _{BE(OFF)} = 3.7 V	t _f		0.5	μs

SAFE OPERATING AREA (See SOA graph below and <u>MIL-STD-750, method 3053</u>)

 $\begin{array}{l} \textbf{DC Tests} \\ T_{C} = +25 \ ^{\circ}\text{C}, \ t_{P} = 1.0 \ \text{s}, \ 1 \ \text{Cycle} \\ \hline \textbf{Test 1} \\ V_{CE} = 5.0 \ \text{V}, \ I_{C} = 2.0 \ \text{A} \\ \hline \textbf{Test 2} \\ V_{CE} = 32 \ \text{V}, \ I_{C} = 310 \ \text{mA} \\ \hline \textbf{Test 3} \\ V_{CE} = 80 \ \text{V}, \ I_{C} = 12.5 \ \text{mA} \end{array}$

T4-LDS-0100-2 Rev. 2 (06/02/14)

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted (continued)

POST RADIATION ELECTRICAL CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Collector to Emitter Cutoff Current		1		100	
V _{CE} = 40 V		ICEO		100	μA
Emitter to Base Cutoff Current		I		2.0	
$V_{EB} = 4 V$		IEBO		2.0	μΑ
Breakdown Voltage, Collector to Emitter		V	80		V
I _C = 100 mA		V (BR)CEO	00		v
Collector to Emitter Cutoff Current		1		2.0	
V _{CE} = 60 V		ICES		2.0	μΑ
Emitter to Base Cutoff Current				2.0	mΔ
V _{EB} = 5.5 V		IEBO		2.0	
Forward-Current Transfer Ratio ⁽¹⁾					
$I_{\rm C}$ = 50 mA, $V_{\rm CE}$ = 5 V	2N5152U3		[10]		
	2N5154U3		[25]		
$I_{C} = 2.5 \text{ A}, V_{CE} = 5 \text{ V}$	2N5152U3	[h _{FF}]	[15]	90	
	2N5154U3		[35]	200	
I_{C} = 5 A pulsed, V_{CE} = 5 V	2N5152U3		[10]		
	2N5154U3		[20]		
Base to Emitter voltage (non-saturated)		Vre		1.45	V
V_{CE} = 5 V, I_{C} = 2.5 A, pulsed		- BE			-
Collector-Emitter Saturation Voltage					.,
$I_{\rm C} = 2.5 \text{ mA}, I_{\rm B} = 250 \text{ mA}, \text{ pulsed}$		V _{CE(sat)}		0.86	V
$I_{\rm C} = 500$ mA, $I_{\rm B} = 500$ mA, pulsed				1.75	
		V		1.67	V
I_{C} = 2.5 A, I_{B} = 250 mA, pulsed I_{C} = 5 A, I_{B} = 500 mA, pulsed		V BE(sat)		2.53	V

(1) See method 1019 of MIL-STD-750 for how to determine $[h_{FE}]$ by first calculating the delta $(1/h_{FE})$ from the preand post-radiation h_{FE} . Notice the $[h_{FE}]$ is not the same as h_{FE} and cannot be measured directly. The $[h_{FE}]$ value can never exceed the pre-radiation minimum h_{FE} that it is based upon.

GRAPHS

Temperature-Power Derating Curve

GRAPHS (continued)

FIGURE 3 Maximum Thermal Impedance (R_{eJc})