

Glass Axial Switching Diode

Qualified per MIL-PRF-19500/116

<u>Qualified Levels:</u> JAN, JANTX, and JANTXV

DESCRIPTION

This popular 1N4148-1 JEDEC registered switching/signal diode features internal metallurgical bonded construction for military grade products per MIL-PRF-19500/116. This small low capacitance diode, with very fast switching speeds, is hermetically sealed and bonded into a double-plug DO-35 package. It may be used in a variety of very high speed applications including switchers, detectors, transient OR'ing, logic arrays, blocking, as well as low-capacitance steering diodes, etc. Microsemi also offers a variety of other switching/signal diodes.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- Popular JEDEC registered 1N4148 number.
- · Hermetically sealed glass construction.
- Metallurgically bonded.
- Double plug construction.
- Very low capacitance.
- Very fast switching speeds with minimal reverse recovery times.
- JAN, JANTX, and JANTXV qualifications are available per MIL-PRF-19500/116.
- MSP screening is also available in reference to MIL-PRF-19500 (JANS).
 (See part nomenclature for all available options.)
- RoHS compliant version available (commercial grade only).

APPLICATIONS / BENEFITS

- High frequency data lines.
- Small size for high density mounting using flexible thru-hole leads (see package illustration).
- RS-232 & RS-422 interface networks.
- Ethernet 10 base T.
- Low capacitance steering or blocking.
- LAN.
- Computers.

MAXIMUM RATINGS @ 25 °C unless otherwise stated

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	T _J & T _{STG}	-65 to +175	°C
Thermal Resistance Junction-to-Lead (1)	R _{OJL}	250	°C/W
Thermal Resistance Junction-to-Ambient (2)	$R_{\Theta JA}$	325	°C/W
Maximum Breakdown Voltage	$V_{(BR)}$	100	V
Working Peak Reverse Voltage	V_{RWM}	75	V
Average Rectified Current @ T _A = 75 °C (3)	lo	200	mA
Non-Repetitive Sinusoidal Surge Current (tp = 8.3 ms)	I _{FSM}	2	A (pk)

NOTES: 1. Lead length = .375 inch (9.35 mm). See <u>Figure 2</u> for thermal impedance curves.

- 2. T_A = +75°C on printed circuit board (PCB), PCB = FR4 .0625 inch (1.59 mm) 1-layer 1-Oz Cu, horizontal, in still air; pads for axial = .092 inch (2.34 mm) diameter, strip = .030 inch (0.76 mm) x 1 inch (25.4 mm) long, lead length L ≤ 0.187 inch (≤ 4.75 mm); R_{ΘJA} with a defined PCB thermal resistance condition included, is measured at I_O = 200 mA.
- 3. See <u>Figure 1</u> for derating.

Also available in:

Package

DO-213AA package (surface mount) 1N4148UR-1

UB package (surface mount)
1N4148UB

UB2 package (2-Pin surface mount) 1N4148UB2

UBC package (Ceramic Lid surface mount) 1N4148UBC

MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetically sealed glass package.
- TERMINALS: Tin/lead plated or RoHS compliant matte-tin (on commercial grade only) over copper clad steel. Solderable per MIL-STD-750, method 2026.
- POLARITY: Cathode indicated by band.
- MARKING: Part number.
- TAPE & REEL option: Standard per EIA-296. Consult factory for quantities.
- WEIGHT: 0.2 grams.
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS						
Symbol	Definition					
I _R	Reverse Current: The maximum reverse (leakage) current that will flow at the specified voltage and temperature.					
lo	Average Rectified Forward Current: The output current averaged over a full cycle with a 50 Hz or 60 Hz sine-wave input and a 180 degree conduction angle.					
t _{rr}	Reverse Recovery Time: The time interval between the instant the current passes through zero when changing from the forward direction to the reverse direction and a specified decay point after a peak reverse current occurs.					
V _F	Forward Voltage: The forward voltage the device will exhibit at a specified current (typically shown as maximum value).					
V_R	Reverse Voltage: The reverse voltage dc value, no alternating component.					
V_{RWM}	Working Peak Reverse Voltage: The maximum peak voltage that can be applied over the operating temperature range excluding all transient voltages (ref JESD282-B). Also sometimes known as PIV.					

ELECTRICAL CHARACTERISTICS @ 25 °C unless otherwise noted

FORWARD VOLTAGE V _{F1} @ I _F =10 mA	FORWARD VOLTAGE V _{F2} @ I _F =100 mA	REVERSE RECOVERY TIME t _{rr} (Note 1)	FORWARD RECOVERY TIME t _{fr} (Note 2)	REVERSE CURRENT I _{R1} @ 20 V	REVERSE CURRENT I _{R2} @ 75 V	REVERSE CURRENT I _{R3} @ 20 V T _A =150°C	REVERSE CURRENT I _{R4} @ 75 V T _A =150°C	CAPACI- TANCE C (Note 3)	CAPACI- TANCE C (Note 4)
V	٧	ns	ns	nA	μА	μA	μΑ	pF	pF

NOTE 1: $I_F = I_R = 10 \text{ mA}, R_L = 100 \text{ Ohms}.$

NOTE 2: $I_F = 50 \text{ mA}.$

NOTE 3: $V_R = 0 \text{ V}$, f = 1 MHz, $V_{SIG} = 50 \text{ mV}$ (pk to pk). **NOTE 4:** $V_R = 1.5 \text{ V}$, f = 1 MHz, $V_{SIG} = 50 \text{ mV}$ (pk to pk).

GRAPHS

FIGURE 1 - Temperature - Current Derating

FIGURE 2 - Thermal Impedance