

LOW POWER NPN SILICON TRANSISTOR

Qualified per MIL-PRF-19500/391

DESCRIPTION

This 2N3019S NPN leaded silicon transistor device is military qualified for high-reliability applications. Microsemi also offers numerous other transistor products to meet higher and lower power ratings with various switching speed requirements in both through-hole and surface-mount packages.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N3019 number. •
- JAN, JANTX, JANTXV and JANS qualifications are available per MIL-PRF-19500/391.
- Rad hard levels are also available per MIL-PRF-19500/391. (For RHA datasheet see JANSD2N3019S.)
- RoHS compliant by design.

APPLICATIONS / BENEFITS

- Short leaded TO-39 package.
- Lightweight.
- Low power.
- Military and other high-reliability applications.

MAXIMUM RATINGS @ $T_A = +25$ °C unless otherwise noted

Parameters/Test Conditions	Symbol	Value	Unit
Junction and Storage Temperature	T_J and T_{STG}	-65 to +200	°C
Thermal Resistance Junction-to-Ambient	R _{ØJA}	195	°C/W
Thermal Resistance Junction-to-Case	R _{eJC}	30	°C/W
Collector-Emitter Voltage	V _{CEO}	80	V
Collector-Base Voltage	V _{CBO}	140	V
Emitter-Base Voltage	V _{EBO}	7.0	V
Collector Current	Ι _C	1.0	Α
Total Power Dissipation: $@ T_A = +25 °C^{(1)}$	PD	0.8	W
@ $T_c = +25 ^{\circ}C^{(2)}$		5.0	

1. Derate linearly 4.6 mW/°C for $T_A \ge +25$ °C. Notes:

2. Derate linearly 28.6 mW/°C for $T_C \ge +25$ °C.

Qualified Levels: JAN, JANTX, JANTXV, and JANS

2N3019S

TO-39 (TO-205AD) Package

Also available in:

TO-5 package (long-leaded) 🔁 <u>2N3019</u>

TO-46 (TO-206AB) (leaded) 2N3057A

TO-18 (TO-206AA) (leaded) 2N3700

> **UB** package (leaded) 2N3700UB

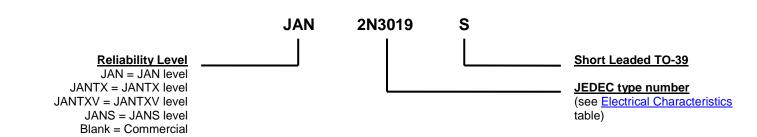
MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC – Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetically sealed, kovar base, nickel cap.
- TERMINALS: Gold plate, solder dip (Sn63/Pb37) available upon request. NOTE: Solder dip will eliminate RoHS compliance.
- MARKING: Part number, date code, manufacturer's ID and serial number.
- POLARITY: NPN.
- WEIGHT: Approximately 1.064 grams.
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

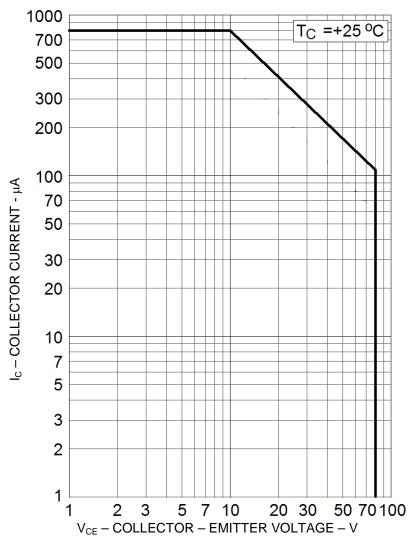
SYMBOLS & DEFINITIONS		
Symbol	Definition	
f	Frequency	
I _B	Base current (dc)	
Ι _Ε	Emitter current (dc)	
T _A	Ambient temperature	
Tc	Case temperature	
V _{CB}	Collector to base voltage (dc)	
V _{CE}	Collector to emitter voltage (dc)	
V _{EB}	Emitter to base voltage (dc)	

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS			•	
Collector-Emitter Breakdown Current $I_{C} = 30 \text{ mA}$	V _{(BR)CEO}	80		V
Collector-Base Cutoff Current $V_{CB} = 140 V$	I _{CBO}		10	μA
Emitter-Base Cutoff Current $V_{EB} = 7 V$	I _{EBO1}		10	μA
Collector-Emitter Cutoff Current $V_{CE} = 90 V$	I _{CES}		10	ηA
Emitter-Base Cutoff Current $V_{EB} = 5.0 V$	I _{EBO2}		10	ηA
ON CHARACTERISTICS				
Forward-Current Transfer Ratio $I_{C} = 150 \text{ mA}, V_{CE} = 10 \text{ V}$ $I_{C} = 0.1 \text{ mA}, V_{CE} = 10 \text{ V}$ $I_{C} = 10 \text{ mA}, V_{CE} = 10 \text{ V}$ $I_{C} = 500 \text{ mA}, V_{CE} = 10 \text{ V}$ $I_{C} = 1.0 \text{ A}, V_{CE} = 10 \text{ V}$	h _{FE}	100 50 90 50 15	300 300 300	
Collector-Emitter Saturation Voltage $I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$ $I_C = 500 \text{ mA}, I_B = 50 \text{ mA}$	V _{CE(sat)}		0.2 0.5	V
Base-Emitter Saturation Voltage $I_{C} = 150 \text{ mA}$, $I_{B} = 15 \text{ mA}$	V _{BE(sat)}		1.1	V

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Small-Signal Short-Circuit Forward Current Transfer Ratio I_{C} = 1.0 mA, V_{CE} = 5.0 V, f = 1.0 kHz	h _{fe}	80	400	
Magnitude of Small-Signal Short-Circuit Forward Current Transfer Ratio $I_C = 50 \text{ mA}, V_{CE} = 10 \text{ V}, f = 20 \text{ MHz}$	h _{fe}	5.0	20	
Output Capacitance $V_{CB} = 10 \text{ V}, I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	C _{obo}		12	pF
Input Capacitance $V_{EB} = 0.5 \text{ V}, I_C = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$	C _{ibo}		60	pF



ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted (continued)

SAFE OPERATION AREA (See SOA graph below and MIL-STD-750, method 3053)

DC Tests $T_c = 25 \text{ °C}, 1 \text{ cycle}, t = 10 \text{ ms}$	
Test 1	$V_{CE} = 10 V$ $I_{C} = 500 mA$
Test 2	V _{CE} = 40 V I _C = 125 mA
Test 3	$V_{CE} = 80 V$ $I_{C} = 60 mA$

(1) Pulse Test: Pulse Width = 300 μ s, duty cycle \leq 2.0%.

Maximum Safe Operating Area

GRAPHS

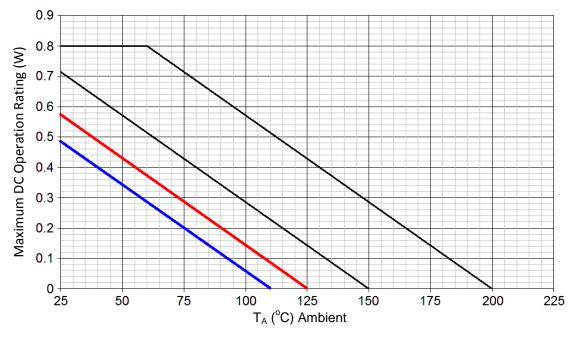


FIGURE 1 Temperature – Power Derating (R_{DJA})

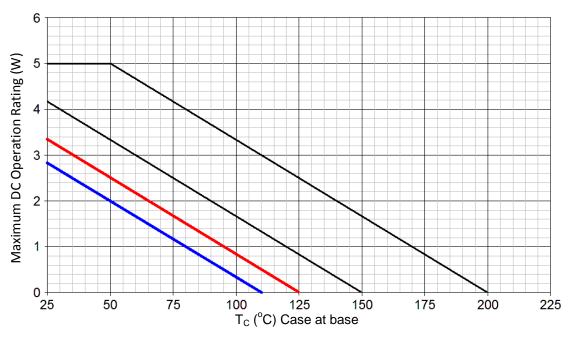


FIGURE 2 Temperature – Power Derating (R_{eJC})