

Date:- 1st August, 2015

Data Sheet Issue:- P1

Medium Voltage Thyristor Types K1670HA600 and K1670HA650

Absolute Maximum Ratings

	VOLTAGE RATINGS	MAXIMUM LIMITS	UNITS
V_{DRM}	Repetitive peak off-state voltage, (note 1)	6000-6500	V
V_{DSM}	Non-repetitive peak off-state voltage, (note 1)	6000-6500	V
V_{RRM}	Repetitive peak reverse voltage, (note 1)	6000-6500	V
V_{RSM}	Non-repetitive peak reverse voltage, (note 1)	6100-6600	V

	OTHER RATINGS	MAXIMUM LIMITS	UNITS
I _{T(AV)}	Mean on-state current. T _{sink} =55°C, (note 2)	1670	Α
I _{T(AV)}	Mean on-state current. T _{sink} =85°C, (note 2)	1170	Α
I _{T(AV)}	Mean on-state current. T _{sink} =85°C, (note 3)	835	Α
I _{T(RMS)}	Nominal RMS on-state current. T _{sink} =25°C, (note 2)	3255	Α
I _{T(d.c.)}	D.C. on-state current. T _{sink} =25°C, (note 4)	2920	Α
I _{TSM}	Peak non-repetitive surge t _p =10ms, V _{RM} =0.6V _{RRM} , (note 5)	21.8	kA
I _{TSM2}	Peak non-repetitive surge t _p =10ms, V _{RM} ≤10V, (note 5)	23.9	kA
l ² t	I^2t capacity for fusing $t_p=10$ ms, $V_{RM}=0.6V_{RRM}$, (note 5)	2.38×10 ⁶	A ² s
l ² t	I²t capacity for fusing t _p =10ms, V _{RM} ≤10V, (note 5)	2.86×10 ⁶	A ² s
-1: /-14	Maximum rate of rise of on-state current (repetitive), (Note 6)	200	A/µs
di⊤/dt	Maximum rate of rise of on-state current (non-repetitive), (Note 6)	1000	A/µs
V_{RGM}	Peak reverse gate voltage	5	V
P _{G(AV)}	Mean forward gate power	3	W
P _{GM}	Peak forward gate power	40	W
V _{GD}	Non-trigger gate voltage, (Note 7)	0.25	V
T _{HS}	Operating temperature range	-40 to +125	°C
T _{stg}	Storage temperature range	-40 to +150	°C

Notes:

- 1) De-rating factor of 0.13% per °C is applicable for T_j below 25°C.
- 2) Double side cooled, single phase; 50Hz, 180° half-sinewave.
- 3) Cathode side cooled, single phase; 50Hz, 180° half-sinewave.
- 4) Double side cooled.
- 5) Half-sinewave, 125°C T_j initial.
- 6) $V_D=67\% \ V_{DRM}, \ I_{TM}=3300A, \ I_{FG}=2A, \ t_r \le 0.5 \mu s, \ T_{case}=125 ^{\circ}C.$
- 7) Rated V_{DRM}.

Characteristics

	PARAMETER	MIN.	TYP.	MAX.	TEST CONDITIONS (Note 1)	UNITS
Vтм	Maximum peak on-state voltage	-	-	2.40	I _{TM} =1500A	V
V_{T0}	Threshold voltage	-	-	1.496		V
r⊤	Slope resistance	-	-	0.606		mΩ
dv/dt	Critical rate of rise of off-state voltage	1000	-	-	V _D =80% V _{DRM} , Linear ramp, gate o/c	V/μs
I _{DRM}	Peak off-state current	-	-	200	Rated V _{DRM}	mA
I _{RRM}	Peak reverse current	-	-	200	Rated V _{RRM}	mA
V _G T	Gate trigger voltage	-	-	3.0	T. 25°C V- 40V I- 24	V
l _{GT}	Gate trigger current	-	-	300	T _j =25°C, V _D =10V, I _T =3A	mA
lμ	Holding current	-	-	1000	T _j =25°C	mA
t _{gd}	Gate controlled turn-on delay time	-	1.0	2.0	I _{FG} =2A, t _r =0.5µs, V _D =67%V _{DRM} ,	
t gt	Turn-on time	-	5.8	8.0	I _{TM} =1700A, di/dt=10A/μs, T _j =25°C	μs
Qrr	Recovered Charge	-	9000	9900		μC
Qra	Recovered Charge, 50% chord	-	3550	-	 I _{TM} =1500A, t _p =1000μs, di/dt=10A/μs,	μC
I _{rm}	Reverse recovery current	-	165	175	V _r =100V	Α
t _{rr}	Reverse recovery time, 50% chord	-	43	-		μs
	Turn-off time	850	-	1100	I _{TM} =1500A, t _p =1000μs, di/dt=10A/μs, V _r =100V, V _{dr} =80%V _{DRM} , dV _{dr} /dt=20V/μs (Note 2)	
tq	Turn-on time	1200	-	1500	I _{TM} =1500A, t _p =1000μs, di/dt=10A/μs, V _r =100V, V _{dr} =80%V _{DRM} , dV _{dr} /dt=200V/μs (Note 2)	- μs
		-	-	0.0105	Double side cooled	K/W
R_{thJK}	Thermal resistance, junction to heatsink	-	-	0.0272	Cathode side cooled	K/W
		-	-	0.0175	Anode side cooled	K/W
F	Mounting force	32	-	40	(Note 3)	kN
Wt	Weight	-	890	-		g

Notes: -

- 1)
- Unless otherwise stated $T_j=125^{\circ}C$. Standard test condition for tq $dV_{dr}/dt=20V/\mu s$. For other dV_{dr}/dt values please consult factory. For other clamp forces please consult factory. 2)

Notes on Ratings and Characteristics

1.0 Voltage Grade Table

Voltage Grade	Vdrm Vdsm Vrrm V	V _{RSM} V	V _D V _R DC V
60	6000	6100	3320
65	6500	6600	3600

2.0 Extension of Voltage Grades

This report is applicable to other and higher voltage grades when supply has been agreed by Sales/Production.

3.0 De-rating Factor

A blocking voltage de-rating factor of 0.13%/°C is applicable to this device for T_i below 25°C.

4.0 Repetitive dv/dt

Standard dv/dt is 1000V/µs.

5.0 Computer Modelling Parameters

5.1 Device Dissipation Calculations

$$\mathbf{I}_{\mathrm{AV}} = \frac{-\,\mathbf{V}_{\!\scriptscriptstyle 0} + \sqrt{\mathbf{V}_{\!\scriptscriptstyle 0} + 4 \cdot \mathrm{ff} \cdot \mathbf{r}_{\!\scriptscriptstyle \mathrm{S}} \cdot \mathbf{W}_{\!\scriptscriptstyle \mathrm{AV}}}}{2 \cdot \mathrm{ff} \cdot \mathbf{r}_{\!\scriptscriptstyle \mathrm{S}}} \qquad \text{and:} \qquad \frac{W_{\!\scriptscriptstyle AV}}{R_{\!\scriptscriptstyle th}} = \frac{\Delta T}{R_{\!\scriptscriptstyle th}} \\ \Delta T = T_{j\,\mathrm{max}} - T_{\!\scriptscriptstyle Hs}$$

Where $V_{T0}=1.496V$, $r_{T}=0.606m\Omega$,

 R_{th} = Supplementary thermal impedance, see table below.

ff = Form factor, see table below.

Supplementary Thermal Impedance							
Conduction Angle	30°	60°	90°	120°	180°	270°	d.c.
Square wave Double Side Cooled	0.0178	0.0116	0.0114	0.0113	0.0111	0.0107	0.0105
Square wave Anode Side Cooled	0.0187	0.0185	0.0184	0.0183	0.0181	0.0178	0.0175
Square wave Cathode Side Cooled	0.0284	0.0283	0.0281	0.0280	0.0278	0.0275	0.0272
Sine wave Double Side Cooled	0.0116	0.0114	0.0113	0.0111	0.0107		
Sine wave Anode Side Cooled	0.0186	0.0184	0.0183	0.0181	0.0178		
Sine wave Cathode Side Cooled	0.0283	0.0281	0.0280	0.0279	0.0275		

Form Factors							
Conduction Angle	30°	60°	90°	120°	180°	270°	d.c.
Square wave	3.46	2.45	2	1.73	1.41	1.15	1
Sine wave	3.98	2.78	2.22	1.88	1.57		

5.2 Calculating V_T using ABCD Coefficients

The on-state characteristic I_T vs. V_T, on page 5 is represented in two ways;

- the well established V₀ and r₅ tangent used for rating purposes and
- (ii) a set of constants A, B, C, D, forming the coefficients of the representative equation for V_T in terms of I_T given below:

$$V_T = A + B \cdot \ln(I_T) + C \cdot I_T + D \cdot \sqrt{I_T}$$

The constants, derived by curve fitting software, are given below for both hot and cold characteristics. The resulting values for V_T agree with the true device characteristic over a current range, which is limited to that plotted.

	25°C Coefficients		125°C Coefficients
Α	1.493364931	Α	2.433351931
В	0.3085604	В	-0.2504477
С	6.95051×10 ⁻⁴	С	4.17184×10 ⁻⁴
D	-0.05357941	D	0.03027257

5.3 D.C. Thermal Impedance Calculation

$$r_{t} = \sum_{p=1}^{p=n} r_{p} \cdot \left(1 - e^{\frac{-t}{\tau_{p}}}\right)$$

Where p = 1 to n, n is the number of terms in the series and:

t = Duration of heating pulse in seconds.

r, = Thermal resistance at time t.

 r_p = Amplitude of p_{th} term.

 τ_p = Time Constant of r_{th} term.

	D.C. Double Side Cooled							
Term	1	2	3	4				
r_p	5.256470×10 ⁻³	2.273835×10 ⁻³	2.490946×10 ⁻³	4.976157×10 ⁻⁴				
$ au_{\mathcal{P}}$	0.8751027	0.2971197	0.07823192	7.166327×10 ⁻³				

D.C. Anode Side Cooled							
Term	1	2	3	4			
rp	9.699639×10 ⁻³	4.158251×10 ⁻³	2.826510×10 ⁻³	8.413660×10 ⁻⁴			
τρ	5.886331	0.4894769	0.1049519	0.01154035			

	D.C. Cathode Side Cooled							
Term	1	2	3					
r_p	0.02176617	4.445979×10 ⁻³	1.050424×10 ⁻³					
$ au_{\mathcal{P}}$	5.037093	0.1622964	0.01320346					

Curves

Figure 1 - On-state characteristics of Limit device

Figure 2 - Transient Thermal Impedance

Figure 3 - Gate Characteristics - Trigger Limits

Figure 4 - Gate Characteristics - Power Curves

Figure 5 - Recovered Charge, Qrr

Figure 6 – Recovered charge, Q_{ra} (50% chord)

Figure 7 - Reverse recovery current, I_{rm}

Figure 8 - Reverse recovery time, t_{rr}

Figure 9 – On-state current vs. Power dissipation – Double Side Cooled (Sine wave)

Figure 10 – On-state current vs. Heatsink temperature - Double Side Cooled (Sine wave)

Figure 11 – On-state current vs. Power dissipation – Double Side Cooled (Square wave)

Figure 12 – On-state current vs. Heatsink temperature - Double Side Cooled (Square wave)

Figure 13 – On-state current vs. Power dissipation – Cathode Side Cooled (Sine wave)

Figure 14 – On-state current vs. Heatsink temperature - Cathode Side Cooled (Sine wave)

Figure 15 – On-state current vs. Power dissipation – Cathode Side Cooled (Square wave)

Figure 16 – On-state current vs. Heatsink temperature - Cathode Side Cooled (Square wave)

