

KNOWLES AEC-Q100/Q103 QUALIFIED MEMS MICROPHONES FOR AUTOMOTIVE APPLICATIONS SELECTION GUIDE

INTRODUCTION

Knowles is the world leader in MEMS microphones and has shipped 20 billion units to date. Knowles' automotive microphones are engineered to a higher standard of quality and supply assurance to support the increasing demands of the automotive market for hands-free calling, advanced voice assistance and in-cabin noise cancellation for passenger comfort.

The launch of the latest microphones marks Knowles' further commitment to the automotive market, building on its industry-leading high quality and innovation standards. The microphones follow the AEC-Q100/103 qualification requirements set by the <u>Automotive Electronics Council</u>, the standardization body for establishing standards for reliable, high-quality electronic components for use in the harsh automotive environment.

Let us help you choose the right microphone for your project.

Support Field Quality for Auto

Technology Turnkey Provider

AUTOMOTIVE CHALLENGES AND SOLUTIONS NEEDED

		CUSTOMER CHALLENGES	SOLUTION	IMPACT ON MIC SPECS
	COMMUNICATION	Hands Free Communication, Phone calls	Beamforming (x2-x8 mics)	High SNR, maximum linearity (<1%) even in loud environment for effective algorithm operation
		Emergency Call	Temp/humidity robustness	MEMS Reliability /Robustness to variations
		Voice-Enabled User Interface / Conversational AI	Voice Wake / Barge-In	High SNR, Close to speaker> High AOP
	PASSENGER COMFORT	Cancel Engine/Road Noise	Active Noise Cancellation (ANC)	ANC> Low Latency and low LFRO
		In-cabin Intercom (SUV/MiniVan)	Beamforming (x2-x8 mics)	High SNR, maximum linearity (<1%) even in loud environment for effective algorithm operation
	-	In-cabin presence detection	Ultrasonic Response	Wideband / Ultrasonic response
	ADVANCED FEATURES	Parking Assist	Ultrasonic Response	Wideband / Ultrasonic response
		Smart tires	Temp / humidity robustness	Stability at high temp / high humidity, high pressure robustness
		Listening to car surrounding / Siren detection	Waterproof exterior mic module	Environmental robustness, high AOP
		Retrofit ECM with MEMS	Replace with MEMS module	Small package size

Emerging use cases like Voice UI, E-Call, ANC are driving new solutions and new mic requirements

Knowles

MICROPHONE TECHNOLOGIES

SOLUTIONS	IMPACT OF MIC SPECS	MEMS	ECM	
	LFRO Variation / Phase Matching	✓		
Beamforming	Environmental Stability - Temp/Humidity	✓		 ECM sensitive to temperature and humidity over time
beamorning	Multiple Mics \rightarrow Smaller Footprint	✓		► Voice mic in head unit →Small size important MEMS footprint smaller than ECM
	Insensitive to Vibration/Shock	✓		 Vibration in ECM affects acoustic output
Active Noise	Low Latency / LFRO	V	\checkmark	 MEMS offers more consistent acoustics
Cancellation	LFRO Variation / Phase Matching	√		Phase response tighter for MEMS
Barge-In/E-Call	High AOP	\checkmark		
System Flexibility	Digital Interface → Lower Noise, Ease of Layout, Multi-Mics	×		
Manufacturing Ease	Auto pick and place, surface mountable	\checkmark		

MEMS mics are robust, reliable and offer several features ideally suited to solve acoustic automotive challenges

CHOOSING THE RIGHT MICROPHONE

SIGNAL TO NOISE RATIO

For far field applications, high SNR microphones result in superior audio pickup. ANC and transparency mode features in TWS need high SNR microphones for better user experience. When comparing analog to PDM microphones, reduce the analog SNR by ~1.5dB to account for the external ADC's noise contribution.

ACOUSTIC OVERLOAD POINT (AOP) AND 1% THD

The AOP is the sound pressure level at 1kHz at which the total harmonic distortion is 10%. At this point, audio is heavily clipped and sounds very distorted. Microphones require a high AOP spec if they are subject to high sound levels (eg. close to loudspeakers or outdoor applications exposed to wind noise). Maximum linearity (<1% THD), even in loud environments benefits effective operation of algorithms including beam forming.

SENSITIVITY OF PDM MICROPHONES

Sensitivity of microphones is the reference output for 94dB SPL sound. Higher sensitivity implies more signal for a given sound. In PDM microphones, higher sensitivity does not imply higher performance because gain can simply be applied in the digital domain by multiplying the output code. Dynamic range is a better indicator of microphone performance.

LOW FREQUENCY ROLL-OFF (LFRO)

The LFRO is the -3dB point of the frequency response with respect to the sensitivity at 1kHz. A low LFRO is advantageous for bass frequency pickup and ANC, but it is more sensitive to wind noise and low frequency overload in a feedback ANC system.

ULTRASONIC APPLICATIONS

MEMS microphones inherently have a very usable ultrasonic response from 20kHz to 80kHz or more. The output of the u/s signal must be processed by an amp, CODEC, or ADC that can extract the needed frequencies, usually by using a higher sample rate and/or lower decimation rate. Operating MEMS microphones at a high CLK rate allows increased ultrasonic bandwidth without noise penalty.

EMERGING DIGITAL ARCHITECTURES IN AUTO

Digital (PDM) microphones have an integrated ADC and return oversampled PDM data at the supplied clock frequency. Digital architectures enable transmission of digital PDM mic output data over an automotive bus such as ADI's A2B audio bus with system benefits on lower weight cables, noise immunity, and scalability.

ANALOG ARCHITECTURE		DIGITAL ARCHITECTURE		
	BENEFITS OF DIGITAL ARCHITECTURES	JTP A'B Head d d d Active Unit d d d d Active Woofer Audio Amplifier		
Signal susceptible to noise & EMI	Noise Immunity	Improved RF/EMI robustness		
Complex design with multiple iterations	Faster Design	Easier system design with fewer iterations		
Dedicated shielded cables needed w/more mics →Higher system cost, more weight	Scalability	Newer architecture like A2B scalable→ Cheaper cables, fewer wires, less weight		