UM11500

KITFS84SKTEVM evaluation board Rev. 1 — 27 October 2020

User manual

KITFS84SKTEVM evaluation board

Important Notice

NXP provides the enclosed product(s) under the following conditions:

This evaluation kit is intended for use of ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY. It is provided as a sample IC pre-soldered to a printed circuit board to make it easier to access inputs, outputs, and supply terminals. This evaluation board may be used with any development system or other source of I/O signals by simply connecting it to the host MCU or computer board via off-the-shelf cables. This evaluation board is not a Reference Design and is not intended to represent a final design recommendation for any particular application. Final device in an application will be heavily dependent on proper printed circuit board layout and heat sinking design as well as attention to supply filtering, transient suppression, and I/O signal quality.

The goods provided may not be complete in terms of required design, marketing, and or manufacturing related protective considerations, including product safety measures typically found in the end product incorporating the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. In order to minimize risks associated with the customers applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. For any safety concerns, contact NXP sales and technical support services.

Should this evaluation kit not meet the specifications indicated in the kit, it may be returned within 30 days from the date of delivery and will be replaced by a new kit.

NXP reserves the right to make changes without further notice to any products herein. NXP makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters can and do vary in different applications and actual performance may vary over time. All operating parameters, including Typical, must be validated for each customer application by customer's technical experts.

NXP does not convey any license under its patent rights nor the rights of others. NXP products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the NXP product could create a situation where personal injury or death may occur.

Should the Buyer purchase or use NXP products for any such unintended or unauthorized application, the Buyer shall indemnify and hold NXP and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges NXP was negligent regarding the design or manufacture of the part.

KITFS84SKTEVM evaluation board

1 Introduction

This document is the user guide for the KITFS84SKTEVM evaluation board. This document is intended for the engineers involved in the evaluation, design, implementation, and validation of FS84 QFN48EP Fail-safe system basis chip with multiple SMPS and LDO.

The scope of this document is to provide the user with information to evaluate the FS8400 Fail-safe system basis chip with multiple SMPS and LDO. This document covers connecting the hardware, installing the software and tools, configuring the environment and using the kit.

The KITFS84SKTEVM enables development on FS84 QFN48EP family of devices. The kit can be connected to the FlexGUI software which allows you to play with registers, try OTP configurations, and burn the part.

The devices can be placed and removed easily from the board by using the socket. The device OTP can be burned three times, which provides a good flexibility. This board supports FS84 QFN48EP family of devices.

2 Finding kit resources and information on the NXP web site

NXP Semiconductors provides online resources for this evaluation board and its supported device(s) on http://www.nxp.com.

The information page for KITFS84SKTEVM evaluation board is at http://www.nxp.com/KITFS84SKTEVM. The information page provides overview information, documentation, software and tools, parametrics, ordering information and a **Getting Started** tab. The **Getting Started** tab provides quick-reference information applicable to using the KITFS84SKTEVM evaluation board, including the downloadable assets referenced in this document.

2.1 Collaborate in the NXP community

The NXP community is for sharing ideas and tips, ask and answer technical questions, and receive input on just about any embedded design topic.

The NXP community is at http://community.nxp.com.

3 Getting ready

Working with the KITFS84SKTEVM requires the kit contents, additional hardware and a Windows PC workstation with installed software.

3.1 Kit contents

- · Assembled and tested evaluation board in an anti-static bag
- 3.0 ft USB-STD A to USB-B-mini cable
- Three connectors, terminal block plug, 2 pos., str. 3.81 mm
- Two connectors, terminal block plug, 3 pos., str. 3.81 mm
- Jumpers mounted on board
- · Quick start guide

KITFS84SKTEVM evaluation board

3.2 Additional hardware

In addition to the kit contents, the following hardware is necessary or beneficial when working with this kit.

Power supply with a range of 8.0 V to 60 V and a current limit set initially to 1.0 A

3.3 Windows PC workstation

This evaluation board requires a Windows PC workstation. Meeting these minimum specifications should produce great results when working with this evaluation board.

• USB-enabled computer with Windows 7 or Windows 10

3.4 Software

Installing software is necessary to work with this evaluation board. All listed software is available on the evaluation board's information page at http://www.nxp.com/ KITFS84SKTEVM or from the provided link.

- · FlexGUI latest version
- FS84-QFN48EP-OTP.xlsm
- Java installation https://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html

4 Getting to know the hardware

The KITFS84SKTEVM provides flexibility to play with all the features of the device and make measurements on the main part of the application. The KL25Z MCU installed on the board, combined with the FlexGUI software allows access to the registers in read and write mode. All regulators are accessible through connectors. Nonuser signal, like DC/DC switcher node is mapped on test points. Digital signals (SPI, RSTB, etc.) are accessible through connectors. Pin WAKE1 has a switch to control (Ignition) them. A VBAT switch is available to power On or Off the device.

The main purpose of this kit is to burn the OTP configuration. This kit can be operated in Emulation mode or in OTP mode. In Emulation mode, as long as the power is supplied, the board configuration stays valid. The OTP mode uses the fused configuration. The device can be fused three times. In OTP mode, the device always starts with the fused configuration, except if the user wants to overwrite OTP configuration using Emulation mode. This board is able to fuse the OTP without any extra tools or board.

Note: Due to the socket, this kit is not optimized for performance measurement or current higher than 1.0 A.

4.1 Kit overview

The KITFS84SKTEVM is a hardware evaluation tool that allows OTP burning. Due to the socket, the FS84xxx part can be configured without the need to solder it. Devices can be programmed three times (see <u>Section 7.3 "Programming the device with an OTP configuration"</u>).

An Emulation mode is possible to test as many configurations as needed. VDDIO is assigned by default to P3V3_KL25Z (KL25Z microcontroller output voltage). From USB

KITFS84SKTEVM evaluation board

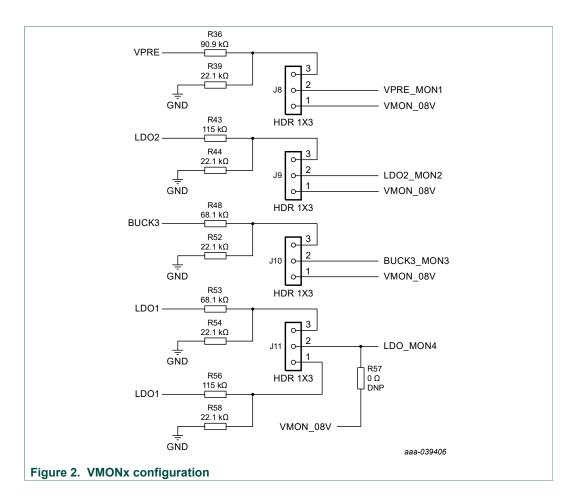
voltage, an external DC/DC generates the OTP programming voltage (8.0 V) without any need for an external power supply.

4.1.1 KITFS84SKTEVM features

- · VBAT power supply connectors (Jack and Phoenix)
- VPRE output capability up to 1.0 A (socket limit)
- VBUCK1
- VBUCK3
- VBOOST 5.0 V or 5.74 V
- LDO1 and LDO2, from 1.1 V to 5.0 V
- · Ignition key switch
- · FS0B external safety pin
- Embedded USB connection for easy connection to software GUI (access to SPI bus, IOs, RSTB, FS0B, INTB, Debug, MUX OUT, regulators)
- · LEDs that indicate signal or regulator status
- · Support OTP fuse capabilities
- · USB connection for register access, OTP emulation and programming
- · Voltage monitoring jumper setting

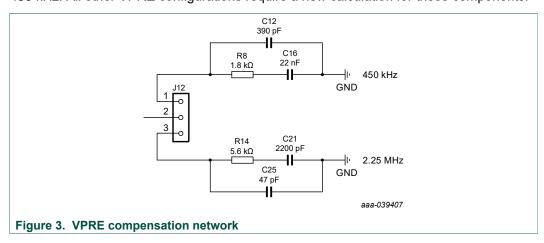
Note: Due to the socket, all current capabilities are limited to 1.0 A.

4.1.2 VMON board configuration


The VMONx configuration is highly dependent on the use case. This kit is delivered with a default configuration shown in <u>Figure 2</u>.

This configuration supports the following mapping:

- VPRE, assigned to VMON1; Bridge resistor set for 4.1 V
- LDO2, assigned to VMON2; Bridge resistor set for 5.0 V
- BUCK3, assigned to VMON3; Bridge resistor set for 3.3 V
- LDO1, assigned to VMON4; Bridge resistor set for 3.3 V
- LDO1, assigned to VMON4; Bridge resistor set for 5.0 V

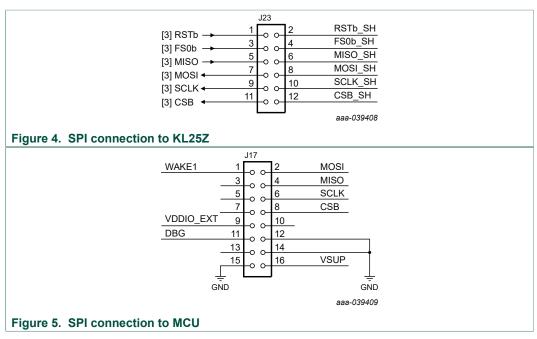

Due to the jumpers, VMONx can be tied to a 0.8 V to force a good voltage at pin level. This behaves like hardware disabling and makes debug easy in some cases.

KITFS84SKTEVM evaluation board

4.1.3 VPRE compensation network

This board is delivered with a VPRE compensation network defined for VPRE 4.1 V at 450 kHz. All other VPRE configurations require a new calculation for these components.

KITFS84SKTEVM evaluation board

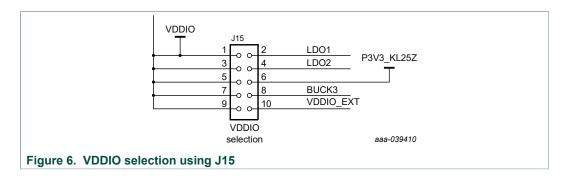

Table 1. Compensation network

Components	VPRE 450 kHz	VPRE 2.2 MHz
C16/C21	22 nF	2.2 nF
C12/C25	390 pF	47 pF
R8/R14	1.8 kΩ	5.6 kΩ
LPRE	4.7 μH or 6.8 μH	1.8 μH, 2.2 μH or 4.7 μH

4.1.4 SPI

The SPI bus is connected to KL25Z MCU. The user can use either one or the other. The choice can be done at start of the FlexGUI or at any time after launch (see <u>Section 8 "Using FlexGUI"</u>).

This kit uses a KL25Z MCU to communicate with FlexGUI. However, if the user wants to connect the SPI to another MCU, this is possible. In this case, remove J23 and appropriate jumpers to disconnect the KL25Z MCU (see Figure 4) and connect the external MCU on J17 connector as shown in Figure 5. In addition to this change, make sure that the VDDIO voltage domain is the same on MCU side and SBC side.



4.1.5 VDDIO

The 3.3 V output voltage of the KL25Z can be used to feed VDDIO, which is the default implementation.

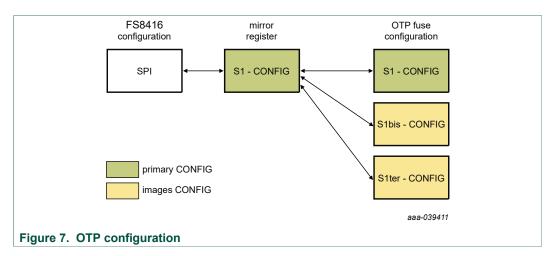
J15 connector can be used to select another source as shown in Figure 6.

KITFS84SKTEVM evaluation board

4.2 Device OTP user configuration

It is recommended to learn about OTP before operating with the device. The device has a high level of flexibility due to parameter configuration available in the OTP. This impacts the functionality of the device. It is key to understand how OTP parameters can be programmed, the interaction with mirror registers and the FS8416 SoC.

The OTP related operations can be performed either in Emulation mode, where the product uses a given configuration as long as power supply is not switched Off or from OTP fuse content that is valid even after a power down/power up sequence.


4.2.1 OTP and mirrors registers

There are two OTP blocks in the device. One is for the main section, and the other for the fail-safe. During configuration, each of them are using dedicated sectors. The OTP configuration scheme is shown in <u>Figure 7</u> (same implementation for main and fail-safe).

The device can be fused three times using mirror registers. The user can first load the mirror register content with the desired contents, then decide either to use the device in Emulation mode or to burn the next sector. The first sector to be burned is S1, the second S1bis and the third S1ter. FlexGUI automatically manages the next sector to be burned. It is not possible to revert back to the previous sector. When the user reaches the sector S1ter, there no other possibility for burn, however emulation mode is still available.

Note: When device is operating in Emulation mode using configuration from mirror registers, few parameters must be overwritten by SPI. This concerns regulator TSD behaviors; VPRE slew rate high-side and low-side VBOOST slew rate. See Section 8.4.10 "TestMode:Mirrors Main and TestMode:Mirrors Failsafe" for additional details.

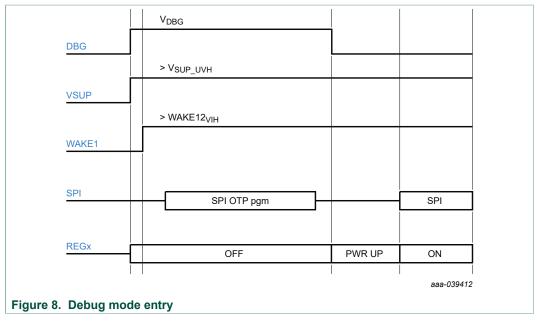
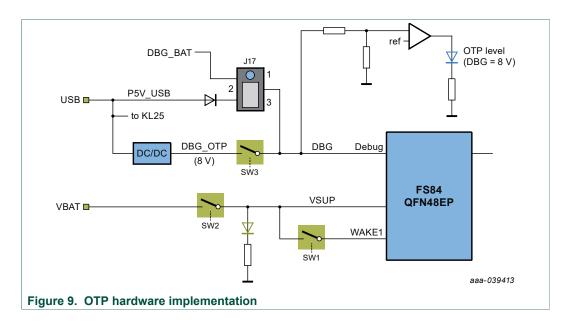
KITFS84SKTEVM evaluation board

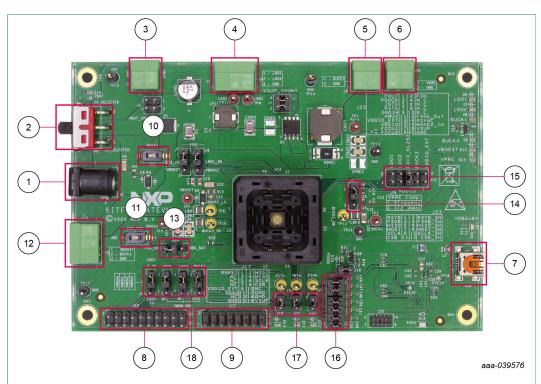
At boot, the content of the valid sector is loaded into the Mirror Register Sector 1. The mirror register content is accessible from FlexGUI by using specific SPI commands. The mirror configuration is managed by the FlexGUI, which eases the access.

4.2.2 OTP hardware implementation

To work in OTP emulation or OTP programming, it is required to start the device in Debug mode.

<u>Figure 8</u> shows the sequence to be followed to enter in Debug mode. The voltage sequence on the kit is done using switches installed on the board, while the OTP registers configuration is managed by the FlexGUI GUI. This is described in detail in the following sections.


Figure 9 shows the hardware kit implementation.

KITFS84SKTEVM evaluation board

4.3 Kit featured components

KITFS84SKTEVM evaluation board

- 1. VBAT Jack connector
- 2. VBAT three position switch
- 3. VBAT Phoenix connector
- 4. LDO1/LDO2 power supplies
- 5. VPRE power supply
- 6. BUCK1 power supply
- 7. USB connector (for FlexGUI control)
- 8. Debug connectivity
- 9. Programming
- 10. Wake1 switch
- 11. OTP burning voltage switch
- 12. VBOOST and BUCK3 power supply
- 13. DEBUG voltage source
- 14. Compensation network selection
- 15. VDDIO selection
- 16. SPI / RSTB / FS0B connection to MCU
- 17. RSTB, INTB and FS0B signals
- 18. VMONx selection

Figure 10. Evaluation board featured component locations

Table 2. Evaluation board component descriptions

Number	Description
1	VBAT Jack connector
2	VBAT three position switch • Left position: board supplied by Jack connector • Middle position: board not supplied • Right position: board supplied by Phoenix connector
3	VBAT Phoenix connector
4	LDO1/LDO2 power supply

UM11500

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2020. All rights reserved.

KITFS84SKTEVM evaluation board

Number	Description
5	VPRE power supply
6	BUCK1 power supply
7	USB connector (for FlexGUI control)
8	Debug connectivity. Access to: VSUP, GND FOUT/FIN PGOOD/RSTB/FS0B FCCUx WAKE2 PSYNC, AMUX VMONx
9	Programming • SPI bus • Debug pin • VPRE, VSUP, GND
10	Wake1 switch
11	OTP burning voltage switch
12	VBOOST and BUCK3 power supply
13	DEBUG voltage source either from USB (recommended) or from VSUP
14	VPRE compensation network selection, either 2.2 MHz or 450 kHz
15	VDDIO source from device regulators or external sources
16	SPI, RSTB or FS0B can be disconnected between device and MCU
17	RSTB, INTB and FS0B signals available here (device pin level)
18	Allows to select VMON from regulators or a fix 0.8 V

4.3.1 FS84 QFN48EP: Fail-safe system basis chip with multiple SMPS and LDO

4.3.1.1 General description

The FS84 QFN48EP family is developed in compliance with ASIL D process, FS84 QFN48EP is QM and ASIL B capable. All device options are pin to pin and software compatible.

The FS84 QFN48EP is an automotive functionally safe multi-output power supply integrated circuit, with focus on Radar, Vision, ADAS domain controller, Radio and Infotainment applications. It includes multiple switch mode and linear voltage regulators. It offers external frequency synchronization input and output, for optimized system EMC performance.

The FS84 QFN48EP includes enhanced safety features, with fail-safe output, becoming a full part of a safety-oriented system partitioning, covering ASIL B safety integrity level. It is developed in compliance with ISO 26262 standard and it is qualified in compliance with AEC-Q100 rev H (Grade1, MSL3).

Several device versions are available, offering choice in number of output rails, output voltage setting, operating frequency and power up sequencing, to address multiple applications.

4.3.1.2 Features

• 40 V DC maximum input voltage for 12 V applications

© NXP B.V. 2020. All rights reserved.

KITFS84SKTEVM evaluation board

- VPRE synchronous buck controller with external MOSFETs. Configurable output voltage, switching frequency, and current capability up to 10 A peak, based on device options.
- Low voltage integrated synchronous BUCK1 converter, dedicated to MCU core supply with SVS capability. Configurable output voltage and current capability up to 4.5 A peak.
- **Based on device options:** low voltage integrated synchronous BUCK3 converter. Configurable output voltage and current capability up to 4.5 A peak.
- BOOST converter with integrated low-side switch. Configurable output voltage and max input current up to 1.5 A peak.
- EMC optimization techniques including SMPS frequency synchronization, spread spectrum, slew rate control, manual frequency tuning
- Based on device options: up to two linear voltage regulators for MCU IOs and ADC supply, external physical layer. Configurable output voltage and current capability up to 400 mA DC.
- OFF mode (power down) with very low quiescent current (10 μA typ)
- 2x input pins for wake-up detection and battery voltage sensing
- · Device control via 32 bits SPI
- Based on device options: Power synchronization pin to operate 2x FS84 devices or FS84 plus an external PMIC
- Scalable portfolio with independent monitoring circuitry, dedicated interface for MCU
 monitoring, simple watchdog function, power good, reset and interrupt, built-in self-test,
 fail-safe output
- Configuration by OTP programming. Prototype enablement to support custom setting during project development in engineering mode.

4.3.2 Indicators

The following LEDs are provided as visual output devices for the evaluation board:

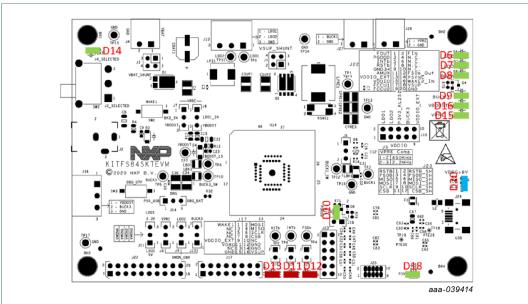


Figure 11. Evaluation board indicator locations

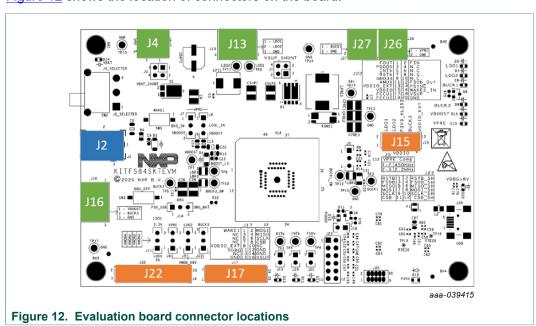

KITFS84SKTEVM evaluation board

Table 3. Evaluation board indicator descriptions

Label	Name	Color	Description
D6	LDO1	Green	LDO1 On
D7	LDO2	Green	LDO2 On
D8	BUCK1	Green	BUCK1 On
D9	BUCK3	Green	BUCK3 On
D10	PGOOD	Green	PGOOD released
D11	INTB	Red	INTB asserted (logic level = 0)
D12	FS0B	Red	FS0B asserted (logic level = 0)
D13	RSTB	Red	RSTB asserted (logic level = 0)
D14	VBAT	Green	VBAT On
D15	VPRE	Green	VPRE On
D16	VBOOST	Green	VBOOST On
D18	P3V3_KL25	Green	P3V3_KL25 On
D20	DBG > 8.0 V	Blue	DBG pin voltage > 8.0 V (OTP programming)

4.3.3 Connectors

Figure 12 shows the location of connectors on the board.

4.3.3.1 VBAT connector (J4)

VBAT connects to the board through Phoenix connector (J4).

Table 4. V_{BAT} Phoenix connector (J4)

Schematic label	Signal name	Description
J4-1	VBAT	Battery voltage supply input
J4-2	GND	Ground

KITFS84SKTEVM evaluation board

4.3.3.2 Output power supply connectors

Table 5. LDO1/LDO2 connector (J13)

(***)		
Schematic label	Signal name	Description
J13-1	LDO1	LDO1 power supply output
J13-2	LDO2	LDO2 power supply output
J13-3	GND	Ground

Table 6. VBOOST/BUCK3 connector (J16)

Schematic label	Signal name	Description
J16-1	VBOOST	VBOOST output
J16-2	BUCK3	BUCK3 power supply output
J16-3	GND	Ground

Table 7. VPRE connector (J26)

Schematic label	Signal name	Description
J26-1	VPRE	VPRE power supply output
J26-2	GND	Ground

Table 8. BUCK1 connector (J27)

Schematic label	Signal name	Description
J27-1	BUCK1	BUCK1 power supply output
J27-2	GND	Ground

4.3.3.3 Debug connector (J22)

Table 9. Debug connector (J22)

Schematic label	Signal name	Description
J22-1	FOUT	Frequency synchronization output
J22-2	FIN	Frequency synchronization input
J22-3	PGOOD	Power GOOD
J22-4	n.c.	not connected
J22-5	INTB	Interrupt, active low
J22-6	n.c.	not connected
J22-7	RSTB	Reset, active low
J22-8	n.c.	not connected
J22-9	GND34	Ground
J22-10	n.c.	not connected
J22-11	AMUX	Analog multiplexer
J22-12	FS0B_Out	Fail-safe, active low
J22-13	VDDIO_EXT	VDDIO external reference
J22-14	PSYNC	Power synchronization

KITFS84SKTEVM evaluation board

Schematic label	Signal name	Description
J22-15	VDDIO	VDDIO used by FS8416
J22-16	WAKE2_IN	Wake2 input
J22-17	FCCU1	Fault collector control unit 1
J22-18	VSUP	VSUP power supply
J22-19	FCCU2	Fault collector control unit 2
J22-20	GND	Ground

4.3.3.4 Program connector (J17)

Table 10. Program connector (J17)

Schematic label	Signal name	Description
J17-1	WAKE1	WAKE1 input
J17-2	MOSI	SPI master output slave input
J17-3	n.c.	not connected
J17-4	MISO	SPI master input slave output
J17-5	n.c.	not connected
J17-6	SCLK	SPI clock
J17-7	n.c.	not connected
J17-8	CSB	SPI chip select
J17-9	VDDIO_EXT	VDDIO external reference
J17-10	n.c.	not connected
J17-11	DBG	Connected to Debug pin
J17-12	GND	Ground
J17-13	n.c.	not connected
J17-14	GND	Ground
J17-15	GND	Ground
J17-16	VSUP	Connected to VSUP pin

4.3.4 Test points

The following test points provide access to various signals to and from the board.

KITFS84SKTEVM evaluation board

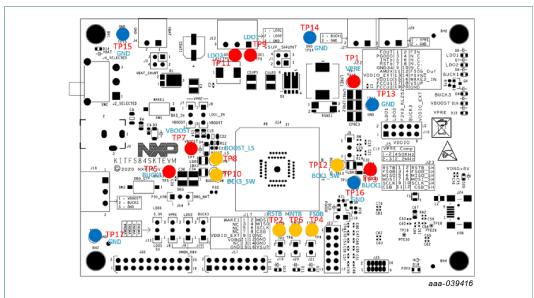


Figure 13. Evaluation board test points

Table 11. Evaluation board test point descriptions

Test point name	Signal name	Description		
TP1	VPRE	VPRE DC/DC regulator output		
TP2	RSTB	Reset		
TP3	BUCK1	BUCK1 DC/DC regulator output		
TP4	FS0B	Fail-safe output		
TP5	BUCK3	BUCK3 DC/DC regulator output		
TP6	INTB	Interruption		
TP7	VBOOST	VBOOST DC/DC output		
TP8	BOOST_LS	VBOOST low-side switcher		
TP9	LDO1	LDO1 regulator output		
TP10	BUCK3_SW	BUCK3 switcher		
TP11	LDO2	LDO2 regulator output		
TP12	BUCK1_SW	BUCK1 switcher		
TP13	GND	Ground		
TP14	GND	Ground		
TP15	GND	Ground		
TP16	GND	Ground		
TP17	GND	Ground		

KITFS84SKTEVM evaluation board

4.3.5 Jumpers

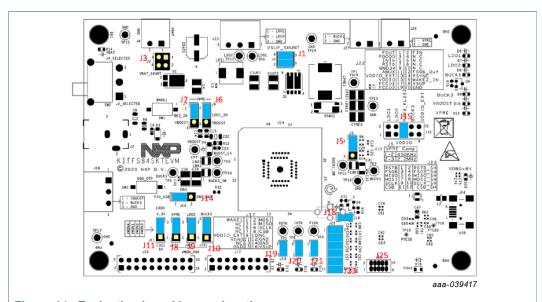


Figure 14. Evaluation board jumper locations

Table 12. Evaluation board jumper descriptions

Name	Function	Pin number	Jumper/pin function
J1	VOLID about	1-2	For current measurement (insert amperemeter)
JI	VSUP shunt	3-4	For current measurement (insert amperemeter)
J2	VBAT jack	Jack	Used for VBAT supply using jack connector
10	VBAT shunt	1-2	Shunt switch SW2 for current > 5.0 A
J3		3-4	Shunt switch SW2 for current > 5.0 A
J6	LDO1 input	1-2	LDO1_IN connected to V _{PRE}
Jo	LDO1 input	2-3	LDO1_IN connected to VBOOST
17	BUCK3 input	1-2	BUCK_INQ tied to VPRE
J7		2-3	BUCK_INQ tied to VBOOST
J8	VMON1	1-2	VMON1 tied to 0.8 V
Jo		2-3	VMON1 tied to VPRE
J9	VMON2	1-2	VMON2 tied to 0.8 V
		2-3	VMON2 tied to LDO2
J10	VMON3	1-2	VMON3 tied to 0.8 V
J 10		2-3	VMON3 tied to BUCK3
J11	VMON4	1-2	VMON4 tied to LDO1 (for LDO1@5.0 V)
JII		2-3	VMON4 tied to LDO1 (for LDO1@3.3 V)
J14	Debug	1-2	Debug pin tied to P5V0_USB (5.0 V provided by USB connector)
		2-3	Debug pin tied to V _{BAT} (through external protection) Do not use for OTP burning

KITFS84SKTEVM evaluation board

Name	Function	Pin number	Jumper/pin function
J15	5 VDDIO selection	1-2	VDDIO tied to LDO1
		3-4	VDDIO tied to LDO2
		5-6	VDDIO tied to P3V3_KL25Z (provided by KL25Z microcontroller)
		7-8	VDDIO tied to BUCK3
		9-10	VDDIO tied to VDDIO external
J18	PGOOD	1-2	PGOOD LED Enabled when jumper is plugged
J19	RSTB	1-2	Reset LED Enabled when jumper is plugged
J20	INTB	1-2	Interrupt LED Enabled when jumper is plugged
J21	FS0B	1-2	FS0B LED Enabled when jumper is plugged
J25	_	_	Use only during board manufacturing
J29	_	_	_
J30	_	_	_

4.3.6 Switches

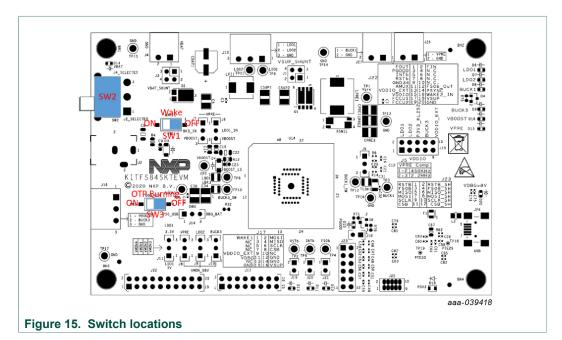


Table 13. SW3

Position	Function	Description
RIGHT	OTP programming Off	OTP burning not possible
LEFT	OTP programming On	8.0 V on DBG pin allows OTP burning (blue LED turns On to indicate this state)

KITFS84SKTEVM evaluation board

Table 14. SW1

Position	Function	Description	
RIGHT	WAKE1 open	Wake1 pin not connected to V _{SUP}	
LEFT	WAKE1 closed	Wake1 pin connected to V _{SUP}	

Table 15. SW2

Position	Function	Description
TOP	VBAT On	VBAT from J4
MIDDLE	VBAT Off	Board not supplied
воттом	VBAT On	VBAT from J2

4.4 Schematic, board layout and bill of materials

The schematic, board layout and bill of materials for the KITFS84SKTEVM evaluation board are available at http://www.nxp.com/KITFS84SKTEVM.

5 Installing and configuring software and tools

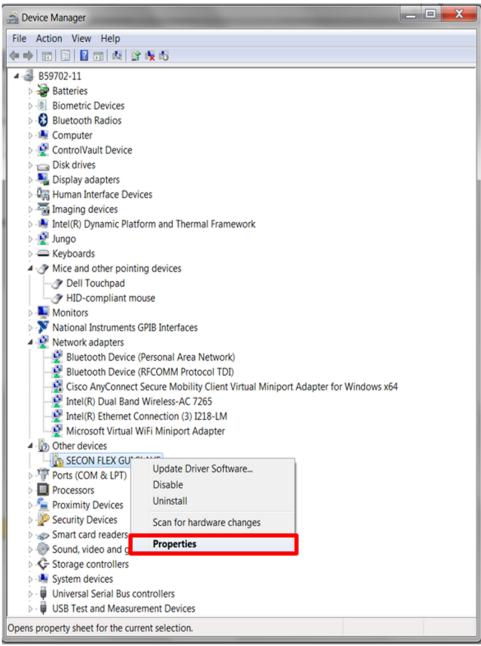
This development kit uses FlexGUI software. FlexGUI software is based on Java JRE.

Preparing the Windows PC workstation consists of three steps.

- 1. Install the appropriate Java SE Runtime Environment (JRE).
- 2. Install Windows 7 FlexGUI driver.
- 3. Install FlexGUI software package.

5.1 Installing the Java JRE

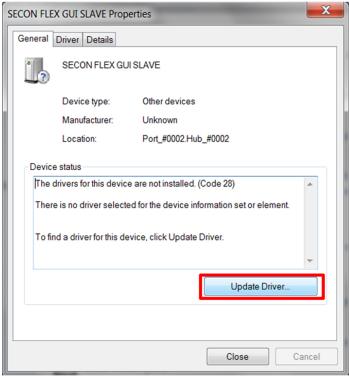
- 1. Download Java JRE (Java SE Runtime Environment), available at http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html (8u162 or newer).
- 2. Open the installer and follow the installation instructions.
- 3. Following the successful installation, restart the computer.


5.2 Installing Windows 7 FlexGUI driver

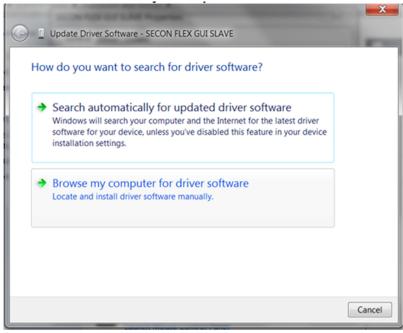
On Windows 7 PCs, a virtual COM port installation is required. Install the Windows 7 FlexGUI driver using the following procedure.

Note: On Windows 10, it is not necessary to install virtual com port as Windows 10 uses a generic COM port driver.

- 1. Connect the kit to the computer as described in <u>Section 6 "Configuring the hardware</u> for startup"
- 2. On the Windows PC, open the **Device Manager**.
- 3. In the **Device Manager** window, right-click on **SECON FLEX GUI SLAVE**, and then select **Properties**.

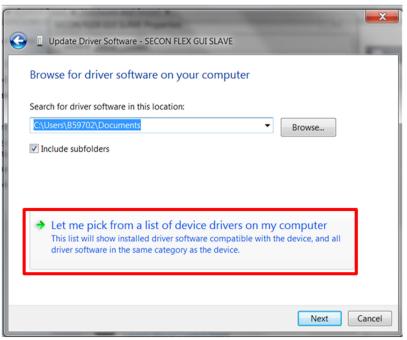

KITFS84SKTEVM evaluation board

aaa-031982

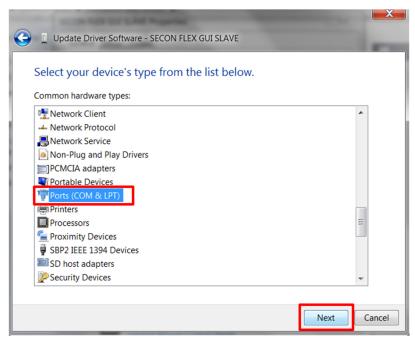

4. In the SECON FLEX GUI SLAVE Properties window, click Update Driver.

KITFS84SKTEVM evaluation board

aaa-031983

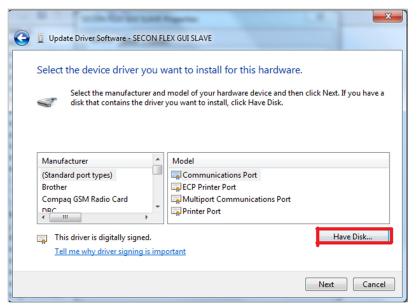

5. in the Update Software Driver window, select Browse my computer for driver software.

aaa-031984

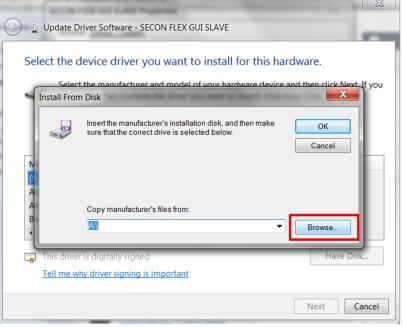

KITFS84SKTEVM evaluation board

Select Let me pick from a list of device drivers on my computer, and then click Next.

aaa-031985

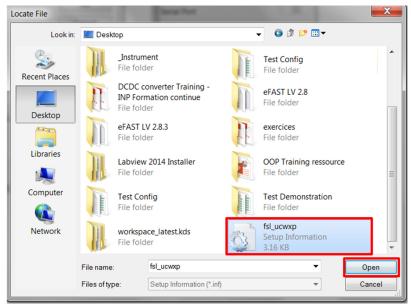

7. Select Ports (COM & LPT) from the list, and then click Next.

aaa-031986


8. Click Have Disk.

KITFS84SKTEVM evaluation board

aaa-031987

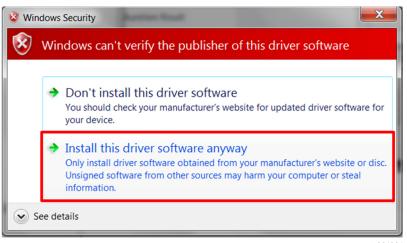

9. Click Browse.

aaa-031988

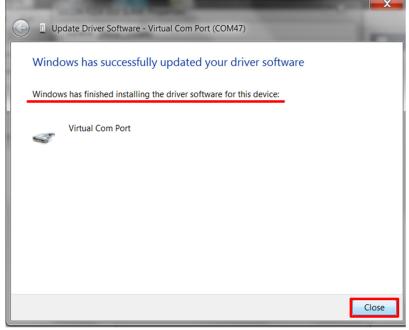
10.In the Locate File window, locate and select fsl_ucwxp, and then click Open.

KITFS84SKTEVM evaluation board

aaa-031989

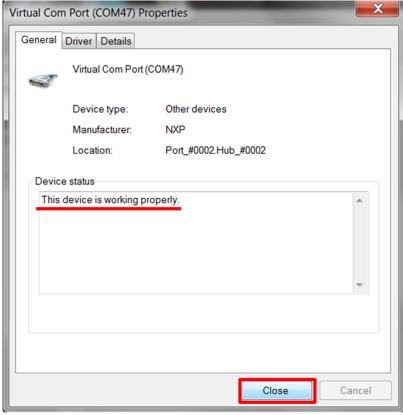

11.In the Install from Disk window, click OK.

aaa-031990


12.If prompted, in the **Windows Security** window, click **Select this driver software** anyway.

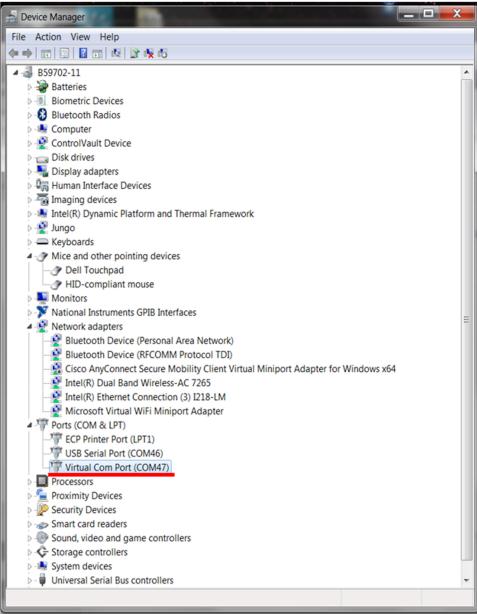
KITFS84SKTEVM evaluation board

aaa-031991


13. Close the window when the installation is complete.

aaa-031992

14.In the **Virtual Com Port Properties** window, verify that the device is working properly, and then click **Close**.

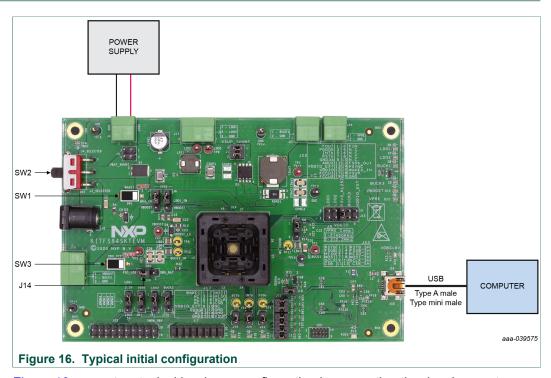

KITFS84SKTEVM evaluation board

aaa-031993

The Virtual Com Port appears in the Device Manager window.

KITFS84SKTEVM evaluation board

aaa-031994


5.3 Installing FlexGUI software package

The FlexGUI software installation requires only extracting the zip file in a desired location.

- 1. If necessary, install the Java JRE and Windows 7 FlexGUI driver.
- 2. Download the latest FlexGUI (32-bit or 64-bit) version, available at http://www.nxp.com/KITFS84SKTEVM.
- 3. Extract all the files to a desired location on your PC. FlexGUI is started by running the batch file, \bin\flexgui-app-spm.bat.

KITFS84SKTEVM evaluation board

6 Configuring the hardware for startup

<u>Figure 16</u> presents a typical hardware configuration incorporating the development board, power supply and Windows PC workstation.

To configure the hardware and workstation as illustrated in <u>Figure 16</u>, complete the following procedure:

1. Install jumpers for the configuration.

Table 16. Jumper configuration

Jumper	Configuration	
J14	connect 1-2 (connect 5.0 V on DBG pin from the USB)	

2. Configure switches for the configuration

Table 17. Switch configuration

Switch	Configuration	
SW1	open (WAKE1)	
SW2	middle position (VBAT off)	
SW3	open (OTP programming off)	

- 3. Connect the Windows PC USB port to the KITFS84SKTEVM development board using the provided USB 2.0 cable.
 - Set the DC power supply to 12 V and current limit to 1.0 A. With power turned Off, attach the DC power supply positive and negative output to KITFS84SKTEVM V_{BAT} Phoenix connector (J4).
- 4. Turn on the power supply.
- 5. Close SW1.

KITFS84SKTEVM evaluation board

Note: At this step, the product is in debug mode and all regulators are turned Off. The user can then power up with OTP configuration or configure the mirror registers before power up. Power up is effective as soon as J14 jumper is removed.

7 Using the KITFS84SKTEVM evaluation board

This section summarizes the overall setup. Detailed description is provided in the following sections.

Before starting the process, choose the mode you want to run the device.

- In Normal mode, the configuration comes from OTP fuses.
- In Debug mode, you can either use the current configuration from OTP fuse, if any, or use the OTP emulation mode to write in the mirror register.

The Normal mode or Debug mode is defined at startup depending on the DBG pin level.

- Normal mode is set by tying DBG to ground.
- Debug mode is set by setting DBG voltage to 5.0 V.

In OTP emulation, you can overwrite the mirror registers from a given OTP fuse configuration. See <u>Section 4.2.1 "OTP and mirrors registers"</u> and <u>Section 8.3 "Working with the Script editor"</u> to define your configuration.

In OTP fuse configuration, use the configuration fused in the OTP. So, if a valid OTP fuse configuration exists, then it is copied to the mirror registers at startup.

7.1 Generating the OTP configuration file

Define and generate your OTP configuration using the excel file *FS84-QFN48EP-OTP.xlsm*. This file allows configuring the device for parameters controlled by the main state machine and the fail-safe state machine.

To generate the script:

1. Fill data in the OTP_conf_main_reg sheet.

KITFS84SKTEVM evaluation board

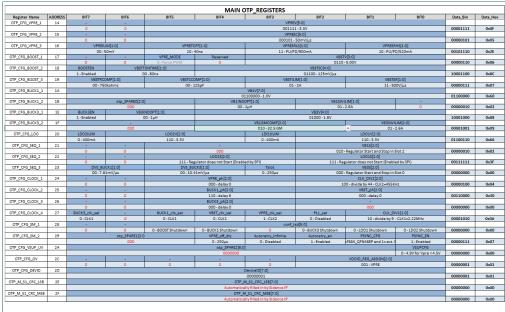
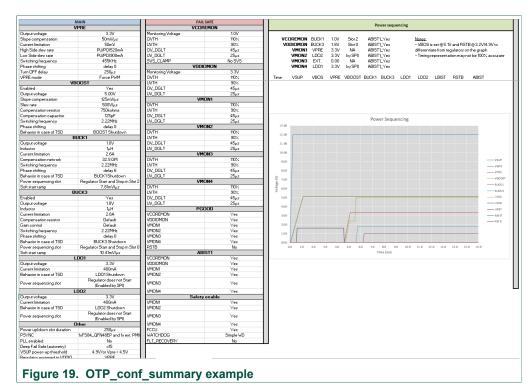
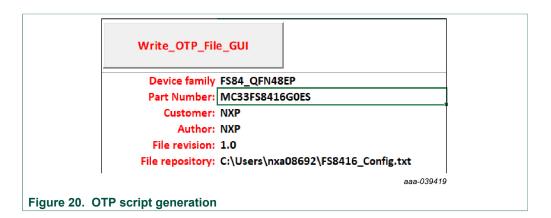


Figure 17. OTP_conf_main_reg spreadsheet example


2. Fill data in the OTP_conf_failsafe_reg sheet.


Figure 18. OTP_conf_failsafe_reg spreadsheet example

3. See the **OTP_conf_summary** sheet to review the complete configuration (main and fail-safe).

KITFS84SKTEVM evaluation board

Generate script in the OTP_conf_file_generation sheet.
 Once the configuration is ready, the user can generate the script file. Go to OTP_conf_file_generation, enter the path in the File repository, and then click Write_OTP_File_GUI.

7.2 Working in OTP emulation mode

At startup, the device always uses the content from the mirror register. This content can come from OTP fuse or from configuration written directly in the mirror register. OTP emulation means that the user can emulate the OTP writing in the mirror register. This allows trials before burning the OTP.

- 1. Configure the hardware. See Section 6 "Configuring the hardware for startup".
- 2. Launch the FlexGUI software.
- 3. Switch to Debug mode:
 - a. Place SW2 in TOP direction (VBAT switched On).

KITFS84SKTEVM evaluation board

- b. Close SW1 (WAKE1).
- While in Debug mode, all regulators are turned Off.
- 4. Load the mirror registers to work in OTP emulation mode. See <u>Section 8.3 "Working</u> <u>with the Script editor"</u>.
- 5. Unplug jumper J14 1-2 to start the device with the mirror configuration setting.
 - a. If the mirror registers are filled (with a configuration using the Script editor), that configuration is used in the emulation session.
 - b. If the mirror registers are not filled (with a configuration using the Script editor), the currently-programmed OTP fuse configuration is used, if it exists.
 - c. Otherwise, the mirror registers are not filled and the OTP fuse is not burned, and the device does not start up.
 - As long as initialization phase is not closed by a first good WD_Answer, the WD does not start and regulators do not stay alive. Also, as long as Debug mode is not exited by writing FS_STATES:[DBG_EXIT] bit to 1, the FS0B pin cannot be released.
- 6. Use the FlexGUI software to evaluate the device configured. See <u>Section 8 "Using FlexGUI"</u>.

KITFS84SKTEVM evaluation board

7.2.1 Example script: closing initialization phase, disabling FCCU monitoring and releasing FS0B

The following script can be used to:

- Disable the WD (simple WD configuration is used here).
- Disable the FCCU monitoring.
 On the hardware kit, the FCCU1 is pulled to GND and FCCU2 is pulled to VDDIO, which is detected as error phase by default. Disabling the FCCU by SPI avoids safety issue at startup.
- · Close the initialization phase.
- Exit the Debug mode.
- Release FS0B pin. This is valid only if WD is activated in OTP.
 Seven good consecutive WD answers are required to have the FLT_ERR_CNTR back to 0. This is one of the conditions to allow FS0B release.

Table 18. FS8416 starting sequence example

Step	Register name	Value	Description
1	FS_WD_WINDOW	0x0200	WDW_WINDOWS[3:0] = 0x0 => Watchdog disabled
2	FS_NOT_WD_WINDOW	0xF50F	NOT of FS_WD_WINDOW
3	FS_I_SAFE_INPUTS	0x51C6	FCCU_CFG[1:0] = 0x0 => 0x1 => Monitoring by pair FCCU12_FLT_POL[0] = 1 => FCCU1 or 2 = 0 is a fault
4	FS_I_NOT_SAFE_INPUTS	0xAC18	NOT of FS_I_SAFE_INPUTS
5	FS_WD_ANSWER	0x5AB2	1st good WD answer (for simple WD selection in OTP) Close the initialization phase
6	FS_STATES	0x4000	DBG_EXIT[0]=1 => Exit Debug mode
7	FS_WD_ANSWER	0x5AB2	2nd good WD answer
8	FS_WD_ANSWER	0x5AB2	3rd good WD answer
9	FS_WD_ANSWER	0x5AB2	4th good WD answer
10	FS_WD_ANSWER	0x5AB2	5th good WD answer
11	FS_WD_ANSWER	0x5AB2	6th good WD answer
12	FS_WD_ANSWER	0x5AB2	7th good WD answer
13	FS_RELEASE_FS0B	0xB2A5	FS0B pin released (pulled to high level)
14	MFLAG2	0x40F1	Clear flags VSUPUV7; VPREUVL, VSUPUVL, WAKE1FLG
15	FS_OVUVREG_STATUS	0x4550	Clear UV status flags

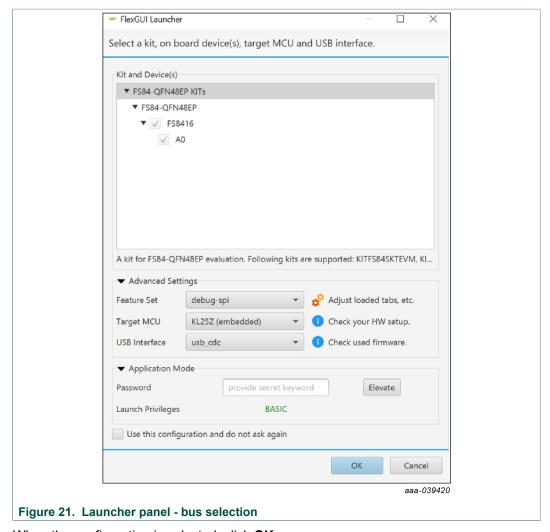
This sequence can be sent using a script built with FlexGUI. See <u>Section 8.3.2 "Script sequence files"</u>.

7.3 Programming the device with an OTP configuration

The device configuration can be changed three times (see <u>Section 4.2.1 "OTP and mirrors registers"</u>). The programming steps are exactly the same as the OTP emulation mode up to step 6.

Then, the user has to burn the part with FlexGUI. See <u>Section 8.4.8 "OTP programming"</u>. Follow the instructions on the screen to proceed.

KITFS84SKTEVM evaluation board

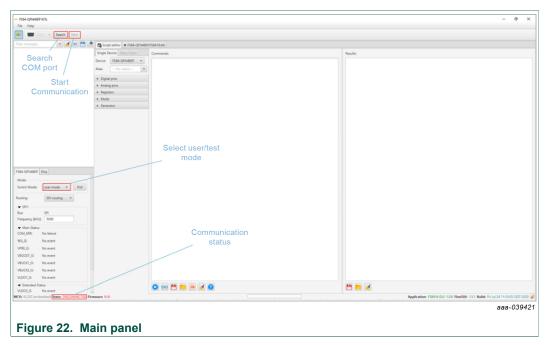

8 Using FlexGUI

To follow the steps in this section, make sure that the board is connected using the appropriate hardware configuration (see Section 7.2 "Working in OTP emulation mode").

Note: It is recommended to use the latest version of FlexGUI.

8.1 Starting the FlexGUI application

After FlexGUI is launched with the *flexgui-app-spm-fs8416.exe* file, the FlexGUI launcher displays available kits.


When the configuration is selected, click \mathbf{OK} .

8.2 Establishing the connection between FlexGUI and the hardware

The board must be connected to the USB before establishing a connection.

- Click Search to detect the COM port of the board.
- · Click Start to enable the connection.

KITFS84SKTEVM evaluation board

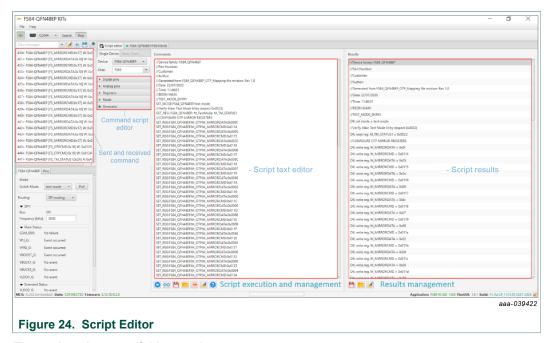
<u>Figure 22</u> shows the mode selection. At first launch, the FlexGUI starts in User mode. The user can then decide to switch to Test mode using the Switch mode drop-down list followed by clicking **Apply**.

The **GUI-Device Status** field checks the connection from MCU to the device. The **ONLINE** status indicates a good connection, while **ERROR** status indicates an issue (e.g. V_{SUP} is not provided to the device).

It is also possible to change the clock frequency using this panel.

The user can read in which mode the device is operating. It is also possible to switch from user mode to test mode (and vice-versa).

The current mode is refreshed only when Poll button is activated. If required, this has to be done at start up (Poll button is disabled by default). See <u>Figure 23</u>.



To move from one mode to the other, select the mode with switch mode drop-down button. If the requested mode is not confirmed by the device (if debug pin is not set, for instance), the drop-down menu switches back to the previous mode.

8.3 Working with the Script editor

The register and OTP emulation can be configured with the script editor. This is particularly useful to try various OTP configurations in Emulation mode.

KITFS84SKTEVM evaluation board

The main subareas of this panel are:

- Send and receive command: displays a summary of commands sent and received from the device
- Command script editor: builds commands to be sent to the device
- Script text editor: sends a sequence of register configurations from a text file or from command edited directly in this area
- Script results: displays result status of each command sent to the device

8.3.1 Script text editor

Using Script editor, you can execute any command either directly or from a file. It is also possible to save and modify a script. Using the brush symbol, it is possible to clean windows if needed.

All commands have to follow a specific syntax. The Help menu describes commands available in the script editor and their syntax.

KITFS84SKTEVM evaluation board

This help page describes commands available in the script editor and their format.

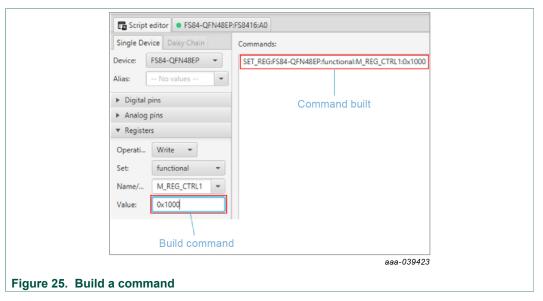
List of commands

- SET_REG: sets value of a selected register.
- READ_REG: reads value of a selected register.
- · SET_DPIN: sets value of a selected digital pin.
- . GET_DPIN: gets value of a selected digital pin.
- GET_APIN: gets value of a selected analog pin. Returned value is in mV.
- PAUSE: shows a dialog with user defined message. The script is paused until the user cofirms the dialog.
- · EXIT: stops execution of the script.
- SET_MODE: sets device mode. List of modes depends on a device.

Command format

The following table describes command parameters. All paramaters are mandatory.

	1st parameter	2nd parameter	3rd parameter	4th parameter	5th parameter
SET_REG	Device	Reg. set	Reg. name / Reg. address	Reg. value	-
GET_REG	Device	Reg. set	Reg. name / Reg. address	-	-
SET_DPIN	Device	Pin name	Dig. pin value	-	-
GET_DPIN	Device	Pin name	-	-	-
GET_APIN	Device	Pin name	-	-	-
PAUSE	Message	-	-	-	-
EXIT	-	-	-	-	-


Description of command parameters mentioned in the table above:

- Device: device name (alias used in application).
- Reg. set: register set name. Register sets allows to associate registers which have similar function.
- · Reg. name: register name as defined in datasheet.
- · Reg. address: register address in decimal or hexadecimal (with 0x prefix) format.
- Reg. value: register value in decimal or hexadecimal (with 0x prefix) format.
- . Pin name: name of digital or analog pin as defined in device datasheet.
- . Dig. pin value: value of digital pin. Allowed strings are 'low' and 'high'
- . Message: a message to be displayed in a dialog. It cannot contain '.' character, which is used as delimiter of parameters.

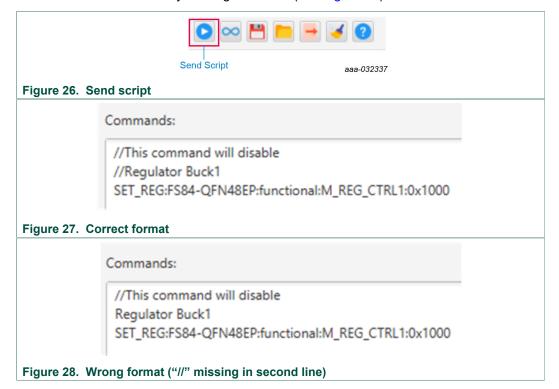

 • Mode: name of a device mode.

Figure 25 shows an example to build a command from the panel.

KITFS84SKTEVM evaluation board

The value 0x1000 is sent to the register M_REG_CTRL1 (BUCK1DIS). The user can then send it to the device by clicking the arrow (see Figure 26).

KITFS84SKTEVM evaluation board

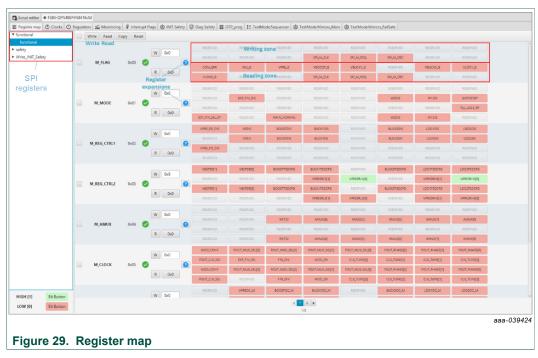
8.3.2 Script sequence files

The Script editor allows the user to save script sequence files. A script sequence file is text file that contains a set of commands sent to the device in the order they are written, as shown in the following example.

```
// FS84_Release_FS0b
SET_REG:FS84-QFN48EP:safety:FS_WD_WINDOW:0x0200
SET_REG:FS84-QFN48EP:safety:FS_NOT_WD_WINDOW:0xF50F
SET_REG:FS84-QFN48EP:Write_INIT_Safety:FS_I_SAFE_INPUTS:0x51C6
SET_REG:FS84-
QFN48EP:Write_INIT_Safety:FS_I_NOT_SAFE_INPUTS:AC18
SET_REG:FS84-QFN48EP:safety:FS_WD_ANSWER:0x5AB2
SET_REG:FS84-QFN48EP:safety:FS_STATES:0x4000
SET_REG:FS84-QFN48EP:safety:FS_WD_ANSWER:0x5AB2
```

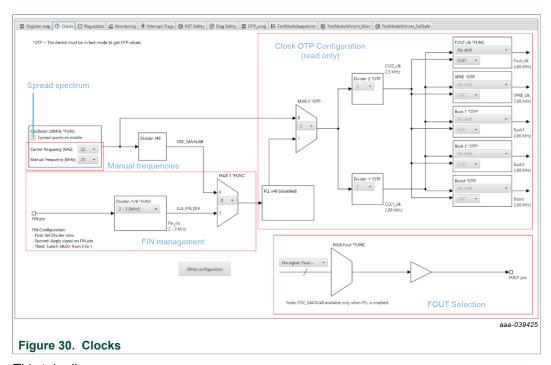
Note: Comments can be added with a // prefix.

8.4 Understanding the FS84 QFN48EP workspace


The FS84 QFN48EP workspace consists of several tabs, each dedicated to a specific aspect of device functionality or configuration.

- Register map
- Clocks
- Regulators
- Measurements
- · Interrupt flags
- · INIT safety
- · Diag safety
- · OTP programming
- TestMode:Sequencer
- TestMode:Mirrors Main and TestMode:Mirrors Failsafe

8.4.1 Register map


All SPI registers can be accessed in write and read mode using this tab.

KITFS84SKTEVM evaluation board

- **Register map**: allows access to functional register, safety register and write init register which are accessible only during initialization phase
- Read: allows you to read any register either individually or by bank
- Write: allows you to write any register either individually or by bank
- Register expansion: displays the value of each device parameter

8.4.2 Clocks

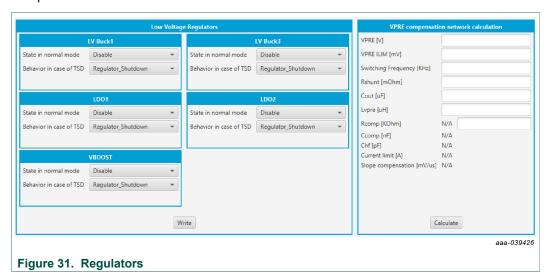
This tab allows:

KITFS84SKTEVM evaluation board

OTP:

• Read current OTP configuration (write operation is not possible). To display the accurate data, the device needs to operate in Test mode.

SPI:

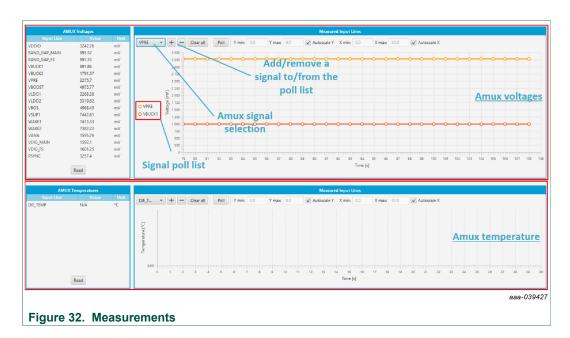

- · Configure the device to work with FIN input
- Select the signal to apply on FOUT pin
- · Play with manual frequencies and spread spectrum

8.4.3 Regulators

The regulator has two main areas:

- Low voltage (LV) regulators configuration
- VPRE compensation network calculation

Each regulator can either be enabled or disabled by SPI. The thermal shutdown behavior can be configured to either shutdown the regulator, or shutdown the regulator and transition to deep fail-safe. The write button applies to the entire table. The VPRE compensation network calculator helps to define the value for VPRE external compensation network.



8.4.4 Measurements

This tab enables two features:

- Read any of the AMUX signals over time
- · Display regulator voltage summary

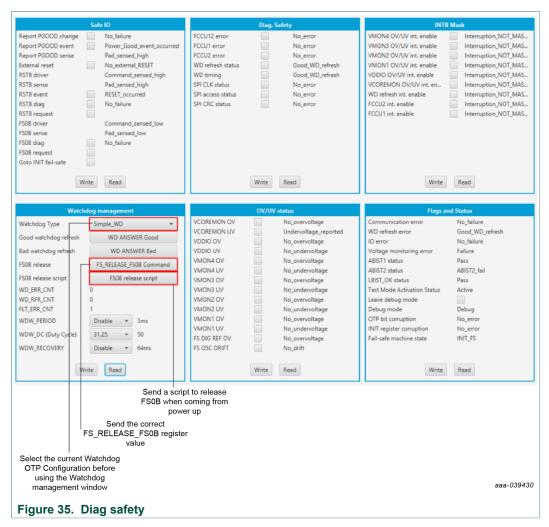
KITFS84SKTEVM evaluation board

8.4.5 Interrupt flags

This tab allows you to set or clear flags. It is also possible to mask the interruption.

KITFS84SKTEVM evaluation board

8.4.6 INIT safety


This tab allows you to manage all registers that can be configured to close the initialization phase. The initialization phase is closed by the first good watchdog refresh before 256 ms timeout.

8.4.7 Diag safety

The watchdog type configured in the OTP has to be manually selected in the drop-down list to play with the watchdog features. If the user is not aware about the type of watchdog configured in the OTP, it can be found in TestMode:Mirrors_Failsafe and Miscellaneous tabs.

KITFS84SKTEVM evaluation board


The FS_Release_FS0B command calculates and sends the right secure16-bit word to release FS0B.

A simplified way to release FS0B after power up is to hit FS0B Release script button. This sends the right sequence to close the initialization sequence, sets the error counter back to 0, then releases FS0B.

KITFS84SKTEVM evaluation board

8.4.8 OTP programming

This tab allows you to burn the OTP using a script generated by the excel file OTP configuration (see Section 7.1 "Generating the OTP configuration file ").

To set up the hardware before OTP burning, see <u>Section 7.3 "Programming the device</u> with an OTP configuration".

See Figure 36 and follow the steps:

- Browse and load the script file you want to burn. The program button is then available.
- · Click Program.

FlexGUI pops up to turn the 8.0 V On, and then turns Off. Note that the blue LED on the board indicates that an 8.0 V voltage is available on the Debug pin. This voltage is used only during the burning process, and should not be applied in any other configuration. At the end of the first OTP programming, the MTP index = 1, WP, BE and CRC flags are green.

The Sector Flags area provides status and <u>Table 19</u> provides the state of main flags after a read. This helps to determine how many times the part was burned.

Table 19. OTP burning flag status

Tuble 19. Off burning hag status				
OTP burning step	BE	WP	CRC	MTP Index
OTP not burn Mirrors empty	Red	Red	Red	1
OTP not Burn Mirrors filled	Red	Red	Green	1
1	Green	Green	Green	1
2	Green	Green	Green	2
3	Green	Green	Green	3

Example shown in Figure 36 corresponds to the OTP burning step 2 from Table 19.


To check if a valid OTP configuration is already burned, switch V_{BAT} Off, then On, and start the device. The device starts with the OTP configuration.

KITFS84SKTEVM evaluation board

8.4.9 TestMode:Sequencer

The sequencer allows you to display the slot configuration for the device. To be able to access this tab, the device has to be in Test mode. The configuration is read from mirror register. It is possible to modify it and update the mirror register.

As an example, the slot sequence is filled at start up with the content of OTP fuses. Then the user can decide to modify any of the configurations coming from the OTP fuse. Note that all these actions are done with Debug pin at 5.0 V and in test mode.

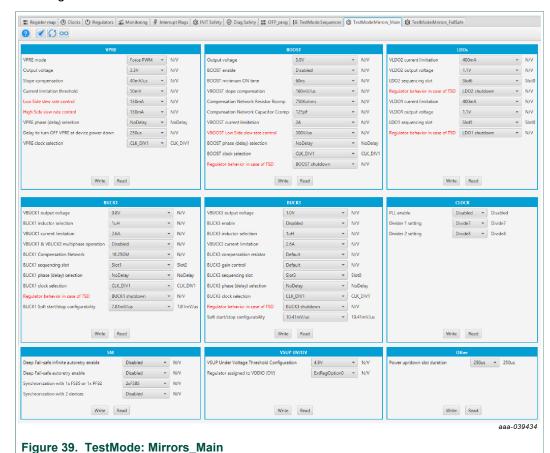
Use the drop-down button (see $\underline{\text{Figure 38}}$) to select the appropriate slot. The selection configuration can be sent to the device by clicking Write button. The current status can be read by using Read button.

8.4.10 TestMode:Mirrors_Main and TestMode:Mirrors_Failsafe

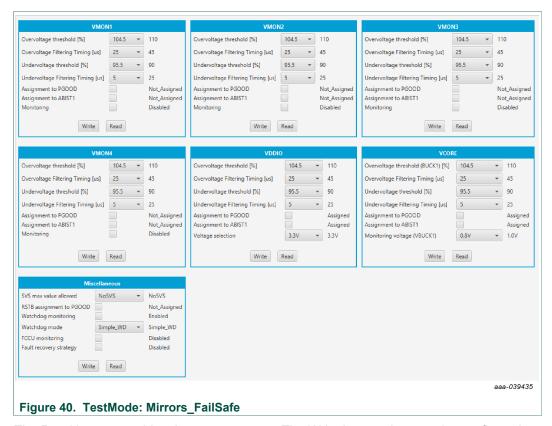
The TestModeMirrors_Main and TestModeMirrors_FailSafe tabs allow access to the OTP main mirrors and fail-safe registers. These tabs are available in Test mode.

In this panel, some parameters are highlighted in red. The red indicates that these parameters are not considered in case of emulation mode (accessible only in debug mode). The user must rewrite by SPI after startup.

UM11500


All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2020. All rights reserved.


KITFS84SKTEVM evaluation board

This concerns only:

- VPRE and VBOOST slew rate
- · All regulator behavior in case of TSD

KITFS84SKTEVM evaluation board

The Read button provides the current status. The Write button changes the configuration in mirror register. This can be useful, for example, to modify few parameters from OTP fuse to start up the board.

9 References

- [1] **KITFS84SKTEVM** detailed information on this board, including documentation, downloads, and software and tools http://www.nxp.com/KITFS84SKTEVM
- [2] **FS8400** product information on FS8400, Safety system basis chip for S32 microcontroller, fit for ASIL B http://www.nxp.com/FS8400
- [3] FS84-QFN48EP-OTP.xlsm OTP configuration file

10 Revision history

Revision history

Rev	Date	Description
v.1	20201027	Initial version

KITFS84SKTEVM evaluation board

11 Legal information

11.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

11.2 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a

default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Evaluation products — This product is provided on an "as is" and "with all faults" basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer. In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages. Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer's exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US\$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

11.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

 $\ensuremath{\mathsf{NXP}}$ — is a trademark of NXP B.V.

SMARTMOS — is a trademark of NXP B.V.

KITFS84SKTEVM evaluation board

Tables

Tab. 1. Tab. 2. Tab. 3. Tab. 4. Tab. 5. Tab. 6. Tab. 7. Tab. 8. Tab. 9. Tab. 10.	Compensation network	Tab. 11. Tab. 12. Tab. 13. Tab. 14. Tab. 15. Tab. 16. Tab. 17. Tab. 18. Tab. 19.	Evaluation board test point descriptions	18 19 20 29 29 34
Figure	es			
Fig. 1.	KITFS84SKTEVM1	Fig. 20.	OTP script generation	32
Fig. 2.	VMONx configuration6	Fig. 21.	Launcher panel - bus selection	35
Fig. 3.	VPRE compensation network6	Fig. 22.	Main panel	36
Fig. 4.	SPI connection to KL25Z7	Fig. 23.	Disabling device mode polling	36
Fig. 5.	SPI connection to MCU7	Fig. 24.	Script Editor	37
Fig. 6.	VDDIO selection using J158	Fig. 25.	Build a command	39
Fig. 7.	OTP configuration9	Fig. 26.	Send script	
Fig. 8.	Debug mode entry9	Fig. 27.	Correct format	
Fig. 9.	OTP hardware implementation10	Fig. 28.	Wrong format ("//" missing in second line)	
Fig. 10.	Evaluation board featured component	Fig. 29.	Register map	
	locations11	Fig. 30.	Clocks	
Fig. 11.	Evaluation board indicator locations13	Fig. 31.	Regulators	
Fig. 12.	Evaluation board connector locations14	Fig. 32.	Measurements	
Fig. 13.	Evaluation board test points17	Fig. 33.	Interrupt flags	
Fig. 14.	Evaluation board jumper locations18	Fig. 34.	INIT safety	
Fig. 15.	Switch locations	Fig. 35.	Diag safety	
Fig. 16.	Typical initial configuration29	Fig. 36.	OTP burning	
Fig. 17.	OTP_conf_main_reg spreadsheet example 31	Fig. 37.	TestMode:Sequencer	
Fig. 18.	OTP_conf_failsafe_reg spreadsheet	Fig. 38.	Slot management	
	example31	Fig. 39.	TestMode: Mirrors_Main	
Fig. 19.	OTP_conf_summary example32	Fig. 40.	TestMode: Mirrors_FailSafe	49