Current Sensors LA12, Magnetic Direct Current Sensor

Overview

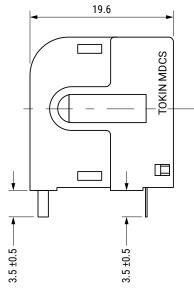
The LA12 Magnetic Direct Current Sensors (MDCS[™]) use our proprietary magnetic material and hall element for magnetic detection of direct current (DC), alternating current (AC), and pulse current. The output voltage varies in proportion to the strength of the current measured.

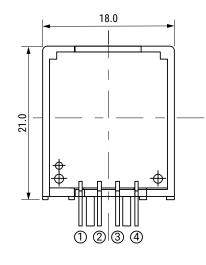
Applications

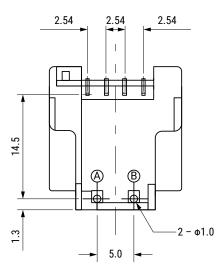
Typical applications include inverter-based home appliances (air conditioners); general-purpose inverters; AC variablespeed drives and servo drives; industrial machinery; UPSs; and DC motor controls.

Benefits

- · Detection of DC, AC, and pulse currents
- Limited fluctuations in output from changes in the power supply voltage and the ambient temperature
- Excellent linearity of the measured current and the converted power output
- · Insulation of measured current and secondary output side
- · Compact and lightweight
- RoHS compliant

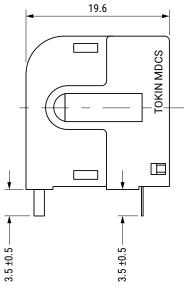

Ordering Information

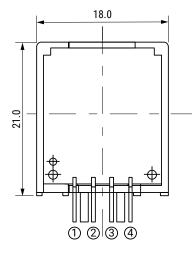

LA12-	10	V21		
Series	Rated Current AC (A)	Output Voltage (V)		
LA12	10 48 50 60	V21 = 2		

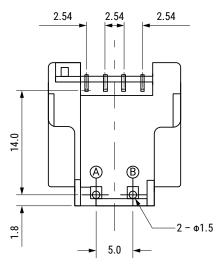


Dimensions in mm

LA12-10V21

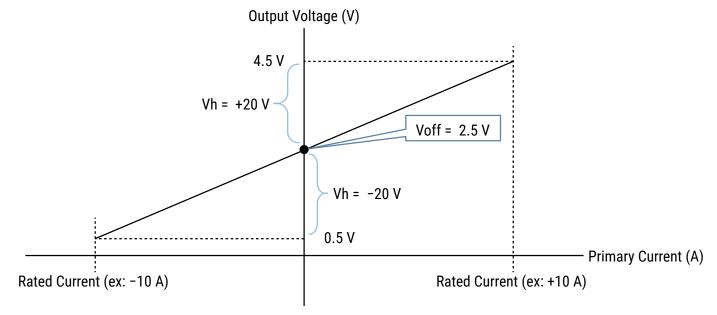



Pin Number	LA12	
1	NC	
2	GND (ground pin)	
3	Vcc (+12 V)	
4	V _{out} (output voltage pin)	
А	(measured current \oplus pin)	
В	(measured current \ominus pin)	



Dimensions in mm cont.

LA12-48V21, LA12-50V21, & LA12-60V21



Pin Number	LA12	
1	NC	
2	GND (ground pin)	
3	Vcc (+12 V)	
4	V _{out} (output voltage pin)	
A	(measured current \oplus pin)	
В	(measured current \ominus pin)	

AC Output Characteristics

Output Voltage Example LA12-10V21

Environmental Compliance

All LA12 sensors are RoHS compliant.

Specifications

Item	Performance Characteristics	
Rated Current	10 – 60 A	
Power Supply Voltage	12 V	
Consumption Current	40 mA Maximum	
Output Voltage	2,000 ±0.06 V	
Residual Voltage	2,500 ±0.06 V	
Hysteresis	60 mV Maximum	
Pulse Response	20 µs maximum (di/dt = 100 AT/µs)	
Linearity	-2 to 2	
Insulation Withstand Voltage	2,000 VAC/1 minute	
Insulation Resistance	500 VDC at 500 MΩ (between wires and terminal)	
Operating Temperature Range	-10°C to +75°C	
Storage Temperature Range	-15°C to +80°C	

Table 1 – Ratings & Part Number Reference

Part Number	Rated Current (A)	Primary Side Windings (Turn)	Scope of Measurement	Power Supply Voltage ¹ (V)	Output Voltage ² (V)	Residual Voltage ³ (V)	Insulation Withstand Voltage ⁴	Insulation Resistance ⁴	Weight (g)	
LA12-10V21	10	6	0 to 100% of rated current						9.0	
LA12-48V21	48	2		12 +5%	10 15%	2 000 10 06		2,000 VAC	500 MΩ	7.8
LA12-50V21	50	2			2,000 ±0.06	2,500 ±0.06	/1 minute	200 MQ	7.8	
LA12-60V21	60	1							7.4	

¹ A power supply voltage variation 30 mV maximum

² At rated current and RL = 10 kΩ, temperature characteristics ± 0.15 %/°C

³ At 0A and RL = 10 k Ω , temperature characteristics ±4 mV/°C

⁴ At 500 VDC, between wire and terminals

Soldering Process

LA12-10V21, LA12-48V21, LA12-50V21, & LA12-60V21

Deflow Coldering	Heating temperature	260°C	
Reflow Soldering	Heating time	within 10 seconds	
Iron Soldering	Temperature of tip	350°C or lower	
	Worktime	within 3 seconds	

Packaging

Part Number	Packaging Type	Pieces Per Box		
LA12-10V21		400		
LA12-48V21	Trov			
LA12-50V21	Тгау	400		
LA12-60V21				

Handling Precautions

Precautions for Product Storage

Current sensors should be stored in normal working environments. While the sensors are quite robust in other environments, exposure to high temperatures, high humidity, corrosive atmospheres, and long-term storage degrade solderability.

KEMET recommends that maximum storage temperature not exceed 80°C and atmospheres should be free of chlorine and sulfur-bearing compounds. Temperature fluctuations should be minimized to avoid condensation on the parts. Avoid storage near strong magnetic fields, as they can magnetize the product and cause its characteristics to change. Limit ambient magnetic fields to 50e or less.

For optimized solderability, the stock of current sensors should be used within 12 months of receipt.

Before Using Magnetic Direct Current Sensors

- Do NOT drop or apply any other mechanical stress, as such stresses may change performance characteristics.
- Do NOT exceed 260°C for 10 seconds when soldering. This is the maximum heat resistance grade of these sensors. Use a low-corrosion type flux when soldering.
- Do NOT allow strong static electricity near the sensor, as the circuit uses ICs. Static electricity can cause damage. Take static electricity precautions when handling.