
LAMBDA62-ARD-1

Arduino Shield

Features

• LoRa™ Semtech SX1262

• Up to 20Km Range

• TX +22 dBm

• High Rx sensitivity: down

to -148dBm

• Built in RF Switch

• 868/915 MHz Versions

• 100mm PCB antenna

• LoRa, FSK, GFSK, MSK, GMSK,

OOK modulation

• Preamble detection

• CE Compliant

• Stackable shield design

• Example Code Available

Arduino Uno Lambda62 Shield

Description

An Arduino Uno RF shield based on the LAMBD62 RF Module.

This Shield allows for the easy addition of RF to your Arduino project. This shield allows

for long transmission distances, with a wide range of encoding options.

There are 2 onboard user configurable switches and the option of an LED array to

display the RF signal strength.

Part Number Description

LAMBDA62-ARD8 Arduino UNO Development shield, 868MHz

Ordering Information

Lambda62 Arduino Shield

LAMBDA62-ARD-1

Overview

Arduino Pin Shield Pin Connector/Pin

0 N/C J3-8

1 N/C J3-7

2 (Input) SW1 J3-6

3 (Input) SW2 J3-5

4 (Output) LED TX J3-4

5 (Output) LED RX J3-3

6 (Output/Input) LED 7 / DIO3 J3-2

7 DIO1 J3-1

8 Busy J4-10

9 nSEL J4-9

10 N/C J4-8

11 SDI J4-7

12 SDO J4-6

13 SCL J4-5

A0 (Output) LED 6 / N/C J2-1

A1 (Output) LED 5 / N/C J2-2

A2 (Output) LED 4 / N/C J2-3

A3 (Output) LED 3 / N/C J2-4

A4 (Output) LED 2 / N/C J2-5

A5 (Output) LED 1 / N/C J2-6

Available Resources

• Lambda62 Datasheet

• SX1262 Datasheet

A Build Pack is also available containing;

• Schematic

• Gerber's

• DesignSpark Project

• Example Code

This is available at www.rfsolutions.co.uk/downloads/Arduino.php

Lambda62 Arduino Shield

LAMBDA62-ARD-1

Application Notes

Transmitter and Receiver Example with two Lambda62 Shields

In this example two Lambda62 shields were used, one as a transmitter and one a

receiver. The frequency used was 868 MHz, but is configurable to 915 MHz. The

modulation used was FSK, however, they can also operate in LoRa mode. More

information about different operating modes can be found in the SX1262 Datasheet.

The Lambda62 modules communicate with the Arduino’s via SPI. This communication

allows for the Arduino to configure the Lambda62 module and transfer the data to be

transmitted.

Step 1: Define Inputs and Outputs

The first step is to define each of the pins connected from the Arduino to the

Lambda62 module. The pin connections can be seen under the table above.

All the SPI pin connections are defined within the SPI.h file which needs to be

included. Next the pins need to be set as either Inputs or outputs. For the on-board

switches the internal pullup resistor needs to be activated, this is achieved by using:

Step 2: Define Lambda configuration settings

In order to define the configuration settings, first the structure of the command

needs to be understood. From the statement below it can be seen that the command

is stored as an array in byte format. The array can be broken down into two sections,

the Opcode and the settings. This Opcode tells the Lambda62 module what the

information it is about to receive relates to. For a full list of Opcodes and the

settings associated with them please refer to the SX1262 datasheet.

For both transmitter and receiver the following settings need to be defined:

Standby mode:

FSK Mode:

Modulation

Parameters:

Packet

parameters:

Regulator Parameters:

Frequency Parameters:

Image Calibration Parameters:

Power Amplifier Parameters:

DIO2 as RF Switch:

OpcodeArray nameData Type Tansmitter

power
Ramp

Time

Lambda62 Arduino Shield

LAMBDA62-ARD-1

Step 3: Define Transmitter Settings

To setup the transmitter the following settings/commands need to be defined for

every transmission:

Transmitter parameters:

Power Amplifier Parameters:

OCP Parameters:

Regulator Parameters:

Clear Device Errors command:

Clear IRQ command:

Buffer Parameters:

Sync byte parameters:

IRQ Parameters:

Step 4: Define Receiver Settings

To setup the receiver the following settings/commands need to be defined every time

it is moved from standby to receive mode:

Clear Device Errors command:

Clear IRQ command:

Buffer Parameters:

Sync byte parameters:

Receiver Gain:

IRQ Parameters:

Set to Receiver Mode:

Lambda62 Arduino Shield

LAMBDA62-ARD-1

Step 5: Send configuration settings to Lambda62

These settings can then be sent to the Lambda62 module. To do this we first check

to make sure the Lambda62 module is not busy. This is achieved by getting the state

of the busy pin using the command “digitalRead(busy_pin)”. If the device is busy it will

have a value of 1, if it is not busy then it will be 0.

To ensure that a command is not sent whilst the Lambda62 module is busy a while

loop was used.

When the Lambda62 is no longer busy the Opcode and settings can be sent. This can

be achieved by setting the chip select pin low and using a for loop as shown below:

The for loop will send each byte of the array one after the other, for the length of the

array. Once the entire array has been sent the chip select pin is set to high. This

indicates to the Lambda62 module that there is no more information for that array.

This needs to be repeated for each array in the order they have been shown

previously.

Step 6: Transmit/Receive

Now that both the transmitter and receiver are setup and in the correct operating

mode a packet can be sent/ received.

Transmitter:

To send a packet you first need to write the data to the buffer. This can be achieved

by using the following array:

The amount of bytes that you write to the buffer can be adjusted by changing the

packet parameters for both receiver and transmitter, and adjusting the write to

buffer packet to match. For this example it is sending 13 bytes containing 1-13 in

decimal.

OpcodeArray nameData Type Buffer

Location
Data to

be sent

Lambda62 Arduino Shield

LAMBDA62-ARD-1

Once your data has been written to the buffer to lambda module needs to be set to

Transmit mode. This is achieved by sending the array:

This will send all the data stored within the buffer. Once complete the lambda module

needs to be set into standby mode by sending the standby array.

Receiver:

When receiving the sent packet first we need for a valid packet to be detected. This

can be achieved by monitoring DIO3. When this pin goes high it indicates a valid

packet has been received.

Once a valid packet has been detected the buffer can be read. To do this the following

section of code was used:

The first step is to send the chip_ select pin low to indicate to the lambda module you

are about to send a command. Next the command “read_buff” is sent. This is the

Opcode for reading the buffer, which is “0x1E”.

To read the data in the buffer you then need to send a “blank” byte and store the

returned value in a variable. For this example we need to read 15 bytes from the

buffer as this will also read the preamble which is 2 bytes long.

Once you have finished reading the buffer the chip select pin needs to be set low, to

indicate you have finished.

The Lambda62 now needs to be put back to standby mode using the same array as

before.

