

SPECIFICATION

Part No. : **LBP.5410.Z.A.30**

Description : LTCC Band Pass Filter for 5410MHz

Bandwidth 1020MHz

Features : Center Frequency 5410.10 MHz

Low Insertion Loss

High Attenuation

Ultra-Compact, Low Profile SMT Package

Dims: 2.0 x 1.25 x 0.95mm

1. Introduction

Taoglas are utilizing their deep understanding of the RF component design and manufacturing process to provide high-quality, small-form-factor, cost-effective and easy to implement RF filters. The Taoglas Filters Division will feature a range of off-the-shelf filters for a variety of applications, including filters for emerging license free bands used for IoT and for GPS L1/L2 and L1/L5 applications. We can also work with customers to develop bespoke filter solutions.

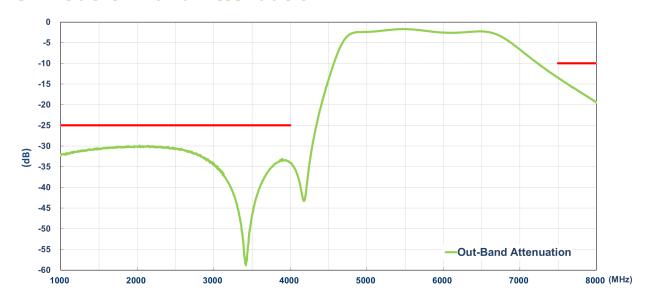
Taoglas LTCC filters are designed to be used in wireless transmitters or receivers. They feature low insertion loss and provide good rejection of unwanted signals at harmonic frequencies for improved system performance. The product is manufactured as a multi-layer monolithic ceramic structure which provides high reliability in a lightweight, low-profile, industrial standard SMT package.

These small part sizes allow for high density PCB layout, provide excellent solderability, and allow for easy visual inspection capability.

The LBP.5410.Z.B.30 is a standard Taoglas product but can be customized for specific customer needs. For more information please contact your regional sales office.


2. Specification

Electrical				
Centre Frequency (Fo)	5410 MHz			
3dB Bandwidth	1020 MHz			
Insertion Loss	1.5 dBi max			
Return Loss	Return Loss < -10 dB			
Attenuation	> 25 dB @ 1000 MHz ~ 4000 MHz			
	> 10 dB @ 7500 MHz ~ 8000 MHz			
In/Out Impedance	50 Ω			
Power Dissipation	1.0 W min.			
Mech	anical			
Dimension	2.0 x 1.25 x 0.95 mm (L x W x H)			
Material	Ceramic			
Finish	Finish Ag plated			
Environmental				
Operating Temperature	-40°C to 85°C			
Storage Temperature	Temperature -40°C to 85°C			
Moisture Sensitivity Level (MSL)	3 (168 Hours)			

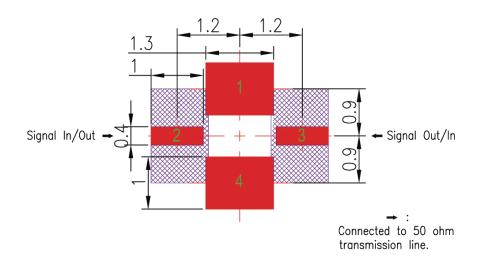


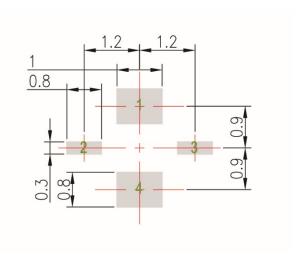
3. Characteristics Curve

3.1. Pass Band Return & Insertion Loss

3.2. Out-Of-Band Attenuation

4. Mechanical Drawing (Unit: mm)


4.1. Antenna Drawing



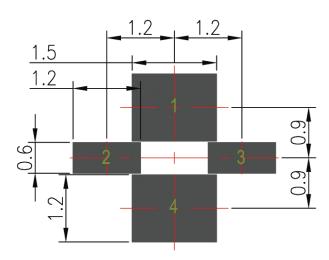
4.2. Recommended PCB Layout

4.2.1. Top Copper

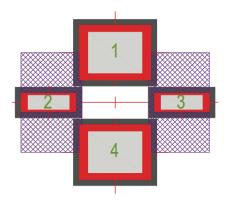
4.2.2. Top Solder Paste

NOTE:

- Ag Plated area
 Solder Mask area
- 3. Copper area 4. Paste area
- 5. Copper Keepout Area

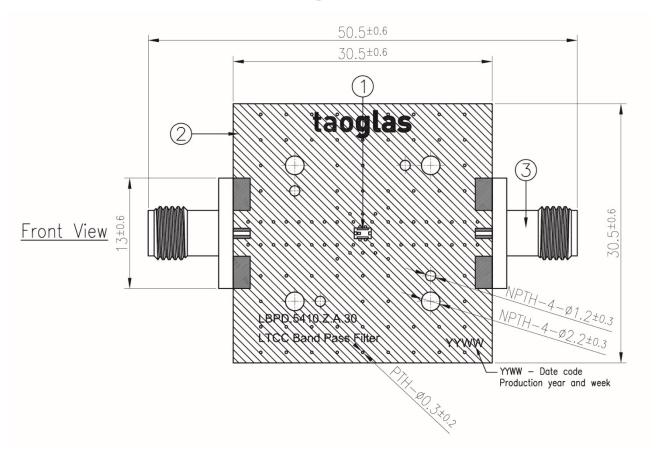


- 6. Any vias in pads should be either filled or tented to prevent solder from wicking away from the pad during reflow.


 7. The dimension tolerances should follow standard PCB manufacturing
- guidelines

4.2.3. Top Solder Mask

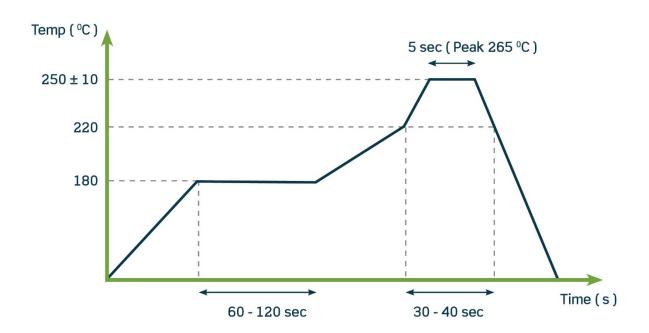
4.2.4. Composite Diagram



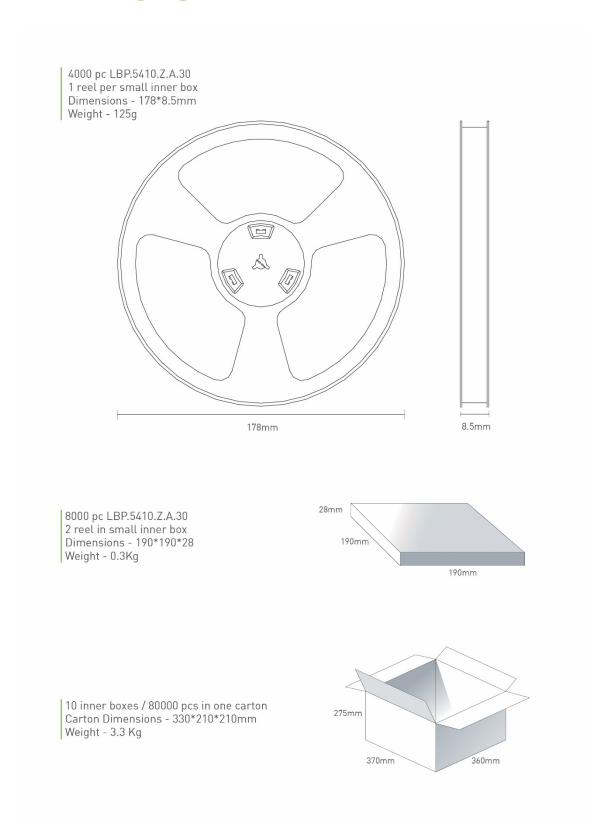
NOTE:

- Ag Plated area
 Solder Mask area
- 3. Copper area
- 4. Paste area
- 5. Copper Keepout Area
- 6. Any vias in pads should be either filled or tented to prevent solder from wicking away from the pad during reflow.
 - 7. The dimension tolerances should follow standard PCB manufacturing quidelines

4.3. Evaluation Board Drawing



l		Name	Material	Finish	QTY
	1	Filter (2x1.25x0.95mm)	Ceramic	Clear	1
	2	PCB	Composite 1.0t	Black	1
	3	SMA(F) ST	Brass	Au Plated	2


5. Recommended Reflow Soldering Profile

Phase	Profile Features	Maximum
Preheat	Temperature Min	150 °C
	Temperature Max	180 °C
	Duration	60-120 sec
Ramp-Up	Avg. Ramp up rate	3 °C/sec (max)
Reflow	Temperature	220 °C
Renow	Duration	30-40 sec
Dook	Temperature	265 °C
Peak	Duration	5 sec Max
Ramp Down	Avg. Ramp down rate	3 °C/sec (max)

6. Packaging

