

PIN Diode Limiter 2 - 4 GHz Rev. V1

Features

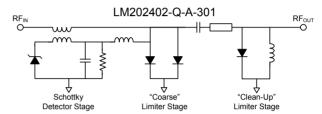
- Surface Mount SP2T Switch in Compact Outline:
 8 L x 5 W x 2.5 H mm Package
- Higher Peak Power Handling than Plastic Packaged MMIC Switches: 1000 W CW
- Higher Average Power Handling than Plastic Packaged MMIC Switches: 100 W CW
- Low Insertion Loss: 0.5 dB
- Low Flat Leakage Power:
 20 dBm (A, B, C)
 15 dBm (E & F)
- RoHS* Compliant

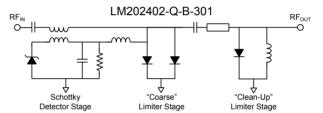
Description

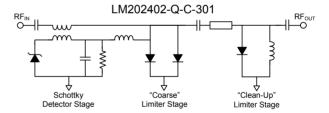
The LM202402-Q-x-301 is a surface mount, 2-stage silicon PIN diode limiter which can operate over the frequency range of 2 to 4 GHz. It is manufactured using a proven hybrid manufacturing process incorporating PIN diodes, Schottky diodes and passive devices integrated onto a ceramic substrate. This low profile, compact surface mount component, offers outstanding small and large signal performance.

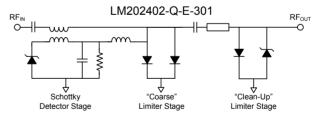
The very low thermal resistance (<40°C/W, from the input limiter PIN diode junctions to the package mounting surface) of the PIN diodes in this device enables it to reliably handle RF incident power levels up to 50 dBm CW and RF peak incident power levels up to 60 dBm (25 μ s pulse width, 1% duty cycle) at T_C = 85°C. The I-layer thickness of the output stage is selected to produce flat leakage of 20 dBm (A, B & C) and 15 dBm (E & F) and spike leakage energy of 0.5 ergs, typical. No external control signals are required.

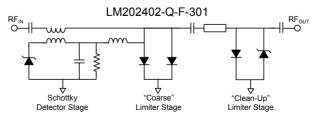
This diode is ideally suited for Active Receiver Protection applications.


Ordering Information


Part Number ¹	Package		
LM202402-Q-x-301-T	tube packaging		
LM202402-Q-x-301-R	250 or 500 piece reel		
LM202402-Q-x-301-W	1-W waffle packaging		
LM202402-Q-x-301-E	RF evaluation board w/ heat sink		


Replace x with A, B, C, E or F.
 A = No DC block capacitor
 B, E = DC block capacitor at input end
 C, F = DC block capacitor at input and output end




Schematic

^{*} Restrictions on Hazardous Substances, European Union Directive 2011/65/EU.

,

PIN Diode Limiter 2 - 4 GHz

Rev. V1

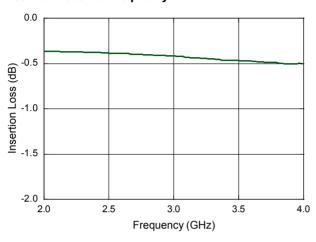
Electrical Specifications: Freq. = 2 - 4 GHz, P_{IN} = 0 dBm, T_A = +25°C, Z_0 = 50 Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Insertion Loss	2 GHz ≤ F ≤ 4 GHz, P _{IN} ≤ -10 dBm	dB	_	0.5	0.7
Return Loss	2 GHz ≤ F ≤ 4 GHz, P _{IN} = -10 dBm	dB	12	14	_
P1dB	2 GHz ≤ F ≤ 4 GHz	dBm	0	8	11
2 ND Harmonic	3 GHz, P _{IN} = -10 dBm	dBc	_	-40	-30
Peak Incident Power	RF Pulse Width = 25 μ s, duty cycle = 1%, $t_{RISE} \le 3 \mu$ s, $t_{FALL} \le 3 \mu$ s	dBm		_	60
CW Incident Power	2 GHz ≤ F ≤ 4 GHz	dBm	_	_	50
Flat Leakage Power	P_{IN} = 60 dBm, RF Pulse Width = 25 µs, duty cycle = 1%, $t_{\text{RISE}} \le 2$ µs, $t_{\text{FALL}} \le 1$ µs Configuration A, B, C Configuration E, F	dBm	_	20 15	23 17
Spike Leakage Energy	P_{IN} = 60 dBm peak, RF pulse width = 25 µs, duty cycle = 1%	erg	_	0.5	0.7
Recovery Time	50% falling edge of RF pulse to 1 dB IL, P_{IN} = 60 dBm peak, RF pulse width = 25 μ s, duty cycle = 5%, $t_{RISE} \le 3 \mu$ s, $t_{FALL} \le 3 \mu$ s	μs	_	0.75	1.50

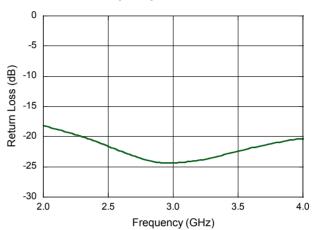
Absolute Maximum Ratings^{2,3}

Parameter	Test Conditions	Absolute Maximum	
RF CW Incident Power	@ +85°C, source & load VSWR <1.2:1 derate linearly to 0 W @ T_C = +150°C ⁴	50 dBm	
RF Peak Incident Power	@ +85°C, source & load VSWR <1.2:1 RF pulse width = 25 μ s, duty cycle = 5%, derate linearly to 0 W @ T _C = +150°C ⁴	60 dBm	
Thermal Resistance	Junction to bottom surface of package	40°C/W	
Junction Temperature	_	+175°C	
Operating / Storage Temperature	_	-65°C to +150°C	
Assembly Temperature	_	260°C for 10 seconds	

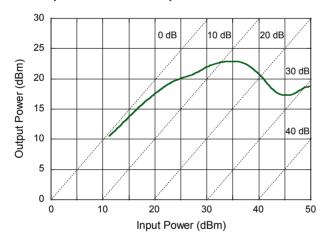
- 2. Exceeding any one or combination of these limits may cause permanent damage to this device.
- 3. MACOM does not recommend sustained operation near these survivability limits.
- 4. T_C is defined as the temperature of the bottom surface of the package.



PIN Diode Limiter 2 - 4 GHz


Rev. V1

Typical Performance Curves


Insertion Loss vs. Frequency

Return Loss vs. Frequency

CW Output Power vs. CW Input Power

PIN Diode Limiter 2 - 4 GHz

Rev. V1

Handling Procedures

Please observe the following precautions to avoid damage:

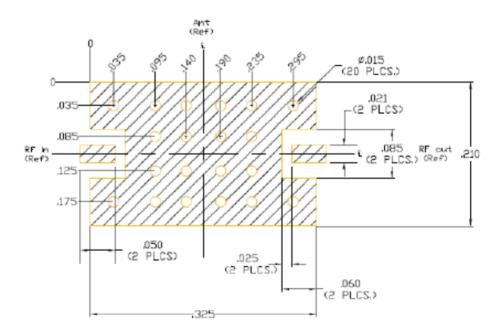
Static and Moisture Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 0 (HBM) devices.

The moisture sensitivity level rating for this device is MSL 1.

Environmental Capabilities

This limiter is capable of meeting the environmental requirements of MIL-STD-750 and MIL-STD-202.


Thermal Grounding Caution

Product engineering dictates that the LM family of high power limiters require proper heat sinking for high power applications >40 dBm (10 W). MACOM recommends using the part number PNMN13881 heat sink block which was developed for LM family.

Assembly Instructions

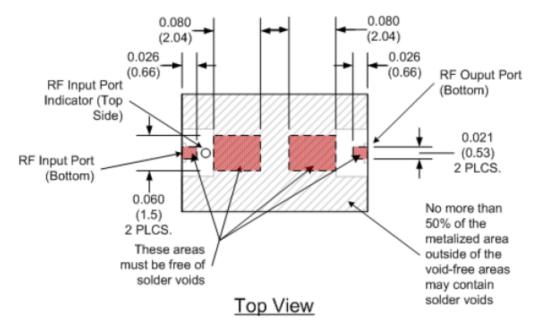
The LM202402-Q-x-301 limiters are capable of being placed onto circuit boards with pick and place manufacturing equipment from tube or tape & reel dispensing. The devices are attached to the circuit board using conventional solder re-flow or wave soldering procedures with RoHS type or Sn 60 / Pb 40 type solders per Table I & Graph I Time-Temperature recommended profile.

RF Circuit Solder Footprint, case style 301 (CS301)

Recommended RF circuit is Rogers R04350B, 10 mils thick.

The hatched metal area on circuit side of device is RF, DC and thermal grounded. Vias should be solid copper fill and gold plated for optimum heat transfer from backside of switch module through circuit vias to metal thermal ground.

4



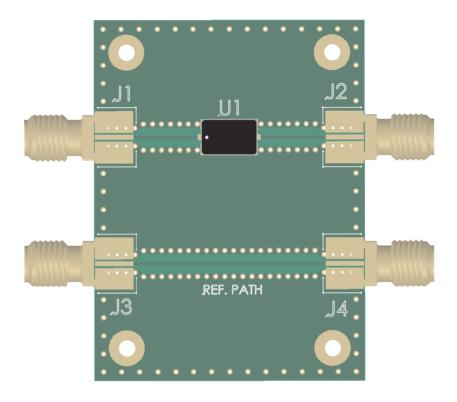
PIN Diode Limiter 2 - 4 GHz

Rev. V1

Criteria for Proper Mounting on PCB

When a large signal is incident upon the input of the LM202402-Q-x-301, the impedance of the coarse limiter diodes is forced to a low value by the charge which is injected into these diodes by the combination of the current from the internal detector stage and the large RF voltage initially present across these diodes. As the impedance of these diodes decreases, an increasingly large impedance mismatch with the impedance of the transmission line to which the limiter is connected is created. Ultimately, the impedance of the coarse limiter diodes is reduced to a few ohms or less. This mismatch creates a standing wave, with a current maximum and voltage minimum located at the position of the coarse limiter diodes. While the large majority of the input signal power is reflected back to its source due to the impedance mismatch, the significant RF current that flows at the current maximum causes Joule heating to occur in the coarse limiter diodes. In order to maintain the junction temperature of these diodes below their maximum rated value, there must be a path with minimal thermal resistance from the coarse diodes to the external system heat sink. Also, there must be a minimal electrical resistance and inductance between the underside of the limiter module package and the system ground in order to achieve maximum RF isolation between the input and the output of the limiter module.

Dimensions in inches (mm).


For these reasons, it is imperative that there are no voids in the electrical and thermal paths directly under the coarse limiter diodes. Care must be taken when mounting the LM202402-Q-x-301 to avoid voids in the solder joint in the area along the lengthwise axis of the package, under and between the filled vias in the AIN substrate of the module which are shown in the diagram (above). It is also important to ensure no solder voids exist between the limiter module RF ports and the PCB to which the limiter module is attached. No greater than 50% of the remaining metalized area on the bottom of the package may contain solder voids.

PIN Diode Limiter 2 - 4 GHz

Rev. V1

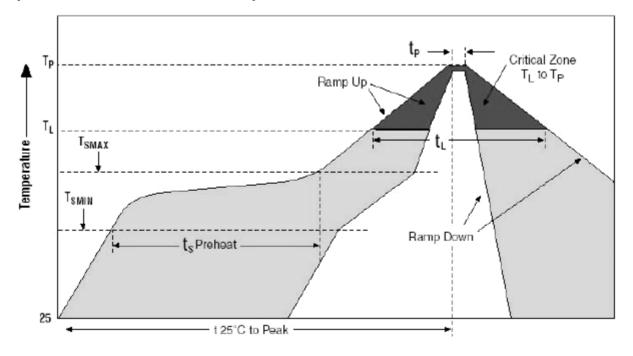
SP2T Switch Evaluation Board Layout

The evaluation board for the LM202402-Q-x-301 limiter is shown above. This evaluation board comprises two sections: the evaluation circuit for the limiter module; and, a reference transmission line.

The limiter module is mounted in position U1. Its RF input is connected to J1 and its output port is connected to J2, via two $50-\Omega$ microstrip transmission lines.

The reference path $50-\Omega$ microstrip transmission line structure can be utilized to determine the insertion loss of the transmission line structures connected between J1 and the limiter module input, as well as between the limiter module output and J2, so that their respective insertion losses may be subtracted from the total insertion loss measured between J1 and J2. This enables the resolution of the insertion loss of the limiter module only.

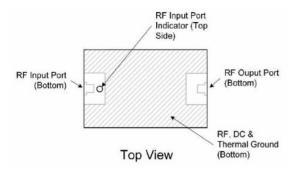
The evaluation board is supplied mounted on a heat sink. The maximum RF input power specified in the Absolute Maximum Ratings table must not be exceeded.

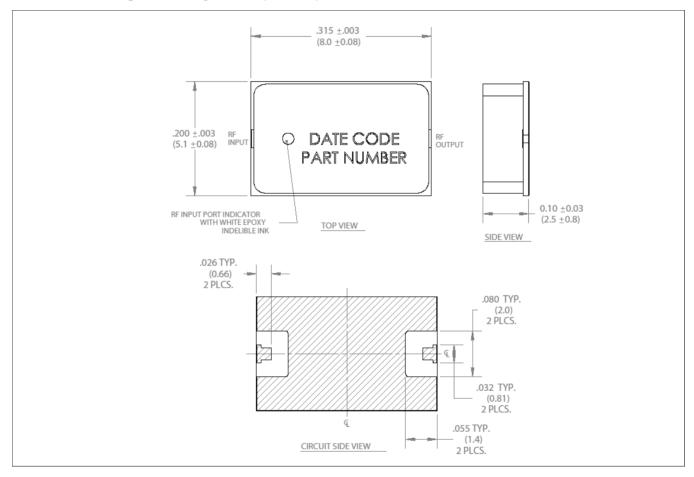

PIN Diode Limiter 2 - 4 GHz

Rev. V1

Table 1: Time-Temperature Profile for Sn 60 / Pb 40 or RoHS Type Solders

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average ramp-up rate (TL to TP)	3°C/second maximum	3°C/second maximum
Preheat - Temperature Minimum (TSMIN) - Temperature Maximum (TSMAX) - Time (Minimum to maximum) (ts)	100°C 150°C 60 - 120 seconds	150°C 200°C 60 - 180 seconds
TSMAX to TL - Ramp-up Rate	_	3°C/second maximum
Time Maintained above: - Temperature (TL) - Time (tL)	183°C 60 - 150 seconds	217°C 60 - 150 seconds
Peak Temperature (TP)	225 +0 / -5°C	260 +0 / -5°C
Time within 5°C of actual Peak Temperature (TP)	10 - 30 seconds	20 - 40 seconds
Ramp-down Rate	6°C/second maximum	6°C/second maximum
Time 25°C to Peak Temperature	6 minutes maximum	8 minutes maximum


Graph1: Solder Re-Flow Time-Temperature Function



PIN Diode Limiter
2 - 4 GHz
Rev. V1

Pin Out

Outline Drawing, Case Style 301 (CS301)

The hatched metal area on circuit side of device is RF and DC grounded.

Dimensions are in inches (mm)

Substrate Material: 20 mil thick Alumina Nitride (ALN)

RF Cover: Black Ceramic

Top Side and Backside Metallization: 100 μ IN. typical plated over Ti-Pd.