

LM129/LM329 6.9V Precision Voltage Reference

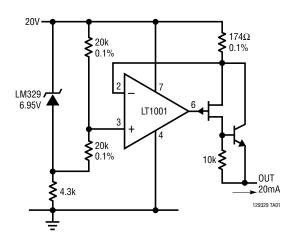
FEATURES

- *Guaranteed* 10ppm/°C Temperature Coefficient
- Guaranteed 1Ω Maximum Dynamic Impedance
- *Guaranteed* 20µV Maximum Wideband Noise
- Wide Operating Current Range: 0.6mA to 15mA

APPLICATIONS

- Transducers
- A/D and D/A Converters
- Calibration Standards
- Instrumentation Reference

DESCRIPTION


The LM®329 temperature compensated 6.9V Zener references provide excellent stability over time and temperature, very low dynamic impedance and a wide operating current range. The device achieves low dynamic impedance by incorporating a high gain shunt regulator around the Zener. The excellent noise performance of the device is achieved by using a "buried Zener" design which eliminates surface noise phenomenon associated with ordinary Zeners. To serve a wide variety of applications, the LM129 is available in several temperature coefficient grades and two package styles. A 20mA positive current source application is shown below.

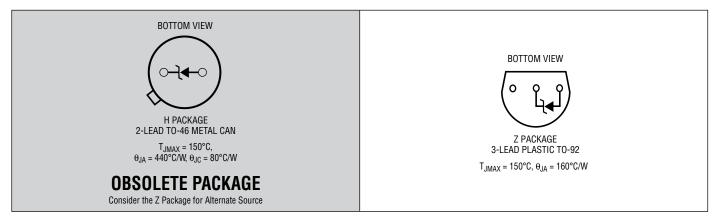
σ, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

Reverse Voltage Change

TYPICAL APPLICATION

20mA Positive Current Source

8 $T_A = 25^{\circ}C$ 7 REVERSE VOLTAGE CHANGE (mV) 6 5 4 3 2 1 0 0 2 4 6 8 10 **REVERSE CURRENT (mA)** 129329 TA01b


LINEAR TECHNOLOGY

ABSOLUTE MAXIMUM RATINGS (Note 1)

Operating Temperature Range	
LM129 (OBSOLETE)	55°C to 125°C
LM329	0°C to 70°C
Storage Temperature Range	65°C to 150°C

Lead Temperature (Soldering, 10 sec)	300°C
Reverse-Breakdown Current	30mA
Forward Current	2mA

PIN CONFIGURATION

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LM129AH#PBF	LM129AH#TRPBF	LM129AH	2-Lead Plastic TO-46 Metal Can	–55°C to 125°C
LM129BH#PBF	LM129BH#TRPBF	LM129BH	2-Lead Plastic TO-46 Metal Can	–55°C to 125°C
LM129CH#PBF	LM129CH#TRPBF	LM129CH	2-Lead Plastic TO-46 Metal Can	–55°C to 125°C
LM329AH#PBF	LM329AH#TRPBF	LM329AH	2-Lead Plastic TO-46 Metal Can	0°C to 70°C
LM329BH#PBF	LM329BH#TRPBF	LM329BH	2-Lead Plastic TO-46 Metal Can	0°C to 70°C
LM329CH#PBF	LM329CH#TRPBF	LM329CH	2-Lead Plastic TO-46 Metal Can	0°C to 70°C
LM329DH#PBF	LM329DH#TRPBF	LM329DH	2-Lead Plastic TO-46 Metal Can	0°C to 70°C
LM329AZ#PBF	LM329AZ#TRPBF	LM329BZ	3-Lead Plastic TO-92	0°C to 70°C
LM329BZ#PBF	LM329BZ#TRPBF	LM329BZ	3-Lead Plastic TO-92	0°C to 70°C
LM329CZ#PBF	LM329CZ#TRPBF	LM329BZ	3-Lead Plastic TO-92	0°C to 70°C
LM329DZ#PBF	LM329DZ#TRPBF	LM329BZ	3-Lead Plastic TO-92	0°C to 70°C

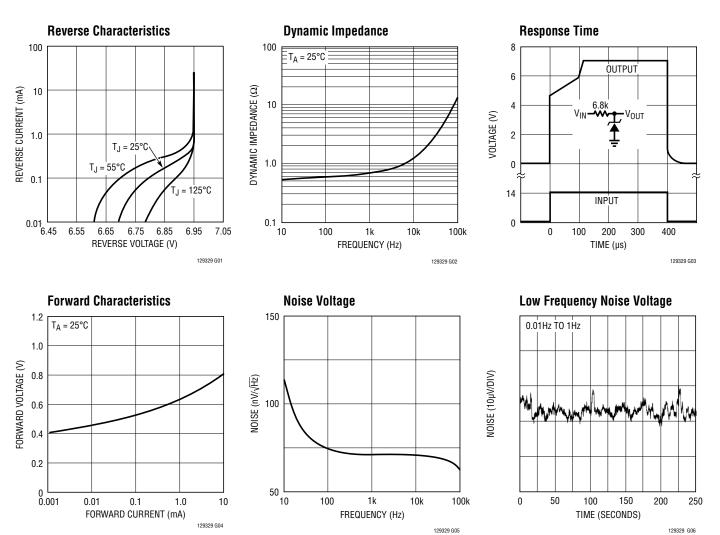
Consult LTC Marketing for parts specified with wider operating temperature ranges. Consult LTC Marketing for information on non-standard lead based finish parts.

Consult LIC Marketing for information on non-standard lead based finish parts.

For more information on lead free part marking, go to: http://www.linear.com/leadfree/ For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

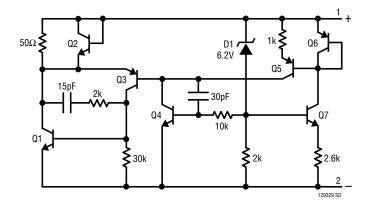
129329fd

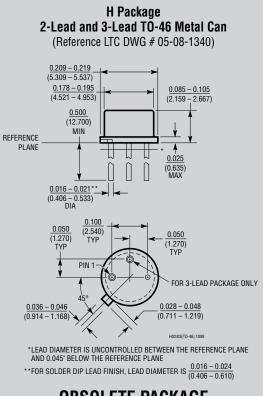
ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. (Note 2)


SYMBOL	PARAMETER	CONDITIONS		LM129A/ LM129B/LM129C Min typ Max		LM329A/LM329B/ LM329C/LM329D Min typ Max			UNITS	
VZ	Reverse-Breakdown Voltage	$T_A = 25^{\circ}C, 0.6mA \le I_R \le 15mA$		6.7	6.9	7.2	6.6	6.9	7.25	V
$\frac{\Delta V_Z}{\Delta I_R}$	Reverse-Breakdown Voltage Change with Current	$\begin{array}{l} T_A = 25^\circ \text{C}, \ 0.6\text{mA} \leq I_R \leq 15\text{mA} \\ 1\text{mA} \leq I_R \leq 15\text{mA} \end{array}$	•		9 12	14		9 12	20	mV mV
ΔV _Z ΔTemp	Temperature Coefficient	I _R = 1mA, LM129A/LM329A LM129B/LM329B LM129C/LM329C LM329D	•		6 15 30	10 20 50		6 15 30 50	10 20 50 100	ppm/°C ppm/°C ppm/°C ppm/°C
	Change in Temperature Coefficient	1mA ≤ I _R ≤ 15mA	•		1			1		ppm/°C
r _Z	Dynamic Impedance	$T_A = 25^{\circ}C$, $I_R = 1mA$ $1mA \le I_R \le 15mA$	•		0.6 0.8	1		0.8 1	2	Ω Ω
e _n	RMS Noise	$T_A = 25^{\circ}C$, $10Hz \le f \le 10kHz$			7	20		7	100	μV
ΔV_Z $\Delta Time$	Long-Term Stability	$T_A = 45^{\circ}C \pm 0.1^{\circ}C$, $I_R = 1mA \pm 0.3\%$			20			20		ppm/kHr

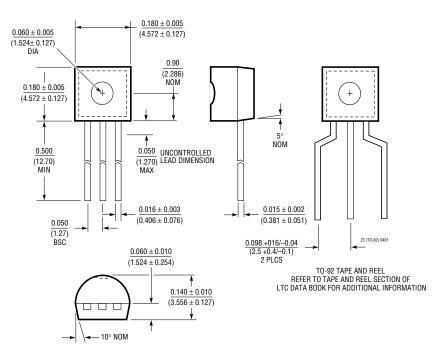
Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: To determine the junction temperature as a function of the ambient temperature, see θ_{JA} for each package.


TYPICAL PERFORMANCE CHARACTERISTICS



SCHEMATIC DIAGRAM



PACKAGE DESCRIPTION

OBSOLETE PACKAGE

Z Package 3-Lead TO-92 (Similar to TO-226) (Reference LTC DWG # 05-08-1410)

129329fd

REVISION HISTORY (Revision history begins at Rev D)

REV	DATE	DESCRIPTION	PAGE NUMBER
D	12/14	Web Links Added Package/Order Information Updated Revision History Added	All 2 7

