

### LPC-P1343 development board user's manual



All boards produced by Olimex are ROHS compliant

Revision C, February 2013 Copyright(c) 2011, OLIMEX Ltd, All rights reserved

#### **INTRODUCTION**

LPC-P1343 is a development board with LPC1343 ARM Cortex-M3 based microcontroller for embedded applications from NXP. LPC-P1343 featuring a high level of integration and low power consumption. This microcontroller supports various interfaces such as one Fast-mode Plus I<sup>2</sup>C-bus interface, USB, UART, SSP interfaces, four general purpose timers, a 10-bit ADC. On the board are available UEXT, Debug Interface, user buttons, USB device and user LEDs. This allows you to build a diversity of powerful software that can be used in a wide range of applications.

#### **BOARD FEATURES**

- MCU: LPC1343 Cortex-M3, up to 70 MHz, 32 kB Flash, 8kB SRAM, UART RS-485, USB, SSP, I<sup>2</sup>C/Fast+, ADC
- Power supply circuit
- Power-on led
- USB connector and functionality
- USBC LED
- Debug interface SWD (Serial Wire Debug)
- UEXT connector
- Eight user LEDs
- Two user buttons
- Reset button
- Prototype area
- FR-4, 1.5 mm, red soldermask, white component print
- Dimensions:80x50mm (3.15 x 1.97")

#### **ELECTROSTATIC WARNING**

The **LPC-P1343** board is shipped in protective anti-static packaging. The board must not be subject to high electrostatic potentials. General practice for working with static sensitive devices should be applied when working with this board.

#### **BOARD USE REQUIREMENTS**

**Cables:** The cable you will need depends on the programmer/debugger you use. For instance, if you use <u>https://www.olimex.com/Products/ARM/JTAG/ARM-JTAG-COOCOX/</u>, you will need USB A-B cable.

**Hardware:** Programmer/debugger or other compatible programming/debugging tool with SWD interface. The only Olimex programmer that has SWD interface at the moment is ARM-JTAG-COOCOX – https://www.olimex.com/Products/ARM/JTAG/ARM-JTAG-COOCOX.

OpenOCD debuggers (ARM-JTAG-TINY, ARM-JTAG-TINY-H, ARM-JTAG-OCD, ARM-JTAG-OCD-H) can also be adapted to work with SWD interface by getting <u>https://www.olimex.com/Products/ARM/JTAG/ARM-JTAG-SWD/</u>. NOTE that at the current moment only Rowley Crossworks supports this combination.

#### **PROCESSOR FEATURES**

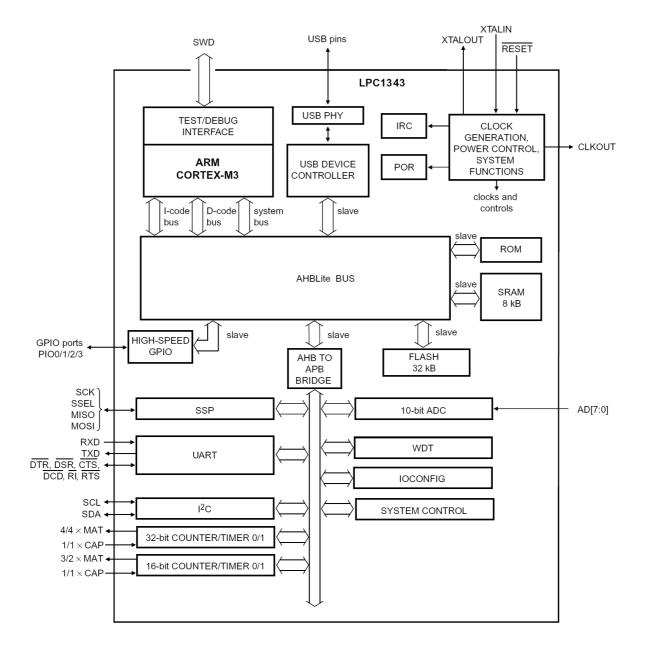
LPC-P1343 board use ARM Cortex<sup>TM</sup>-M3 microcontroller LPC1343FBD48/301 from NXP Semiconductors with these features:

- ARM Cortex-M3 processor, running at frequencies of up to 72 MHz
- ARM Cortex-M3 built-in Nested Vectored Interrupt Controller (NVIC).
- 32kB on-chip flash programming memory. Enhanced flash memory accelerator enables high- peed 72 MHz operation with zero wait states
- In-System Programming (ISP) and In-Application Programming (IAP) via on-chip bootloader software.
- Serial interfaces:
  - USB 2.0 full-speed device controller with on-chip PHY for device

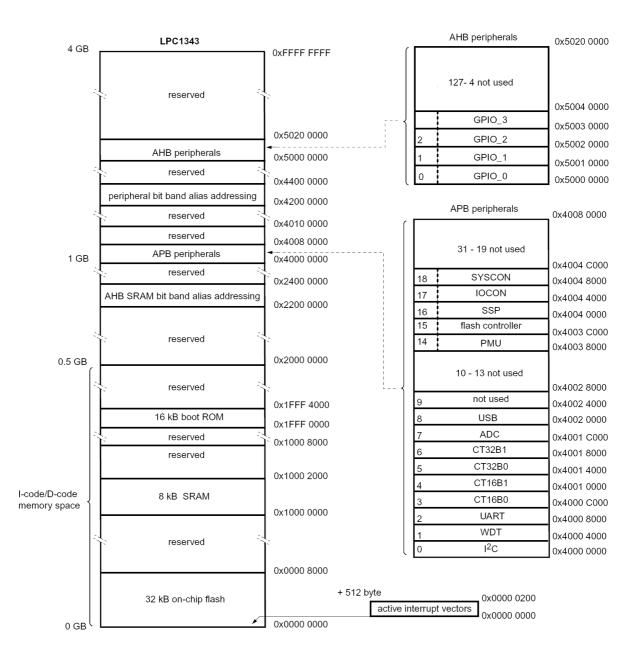
- UART with fractional baud rate generation, modem, internal FIFO and RS-485/EIA-485 support.

- SSP controller with FIFO and multi-protocol capabilities.

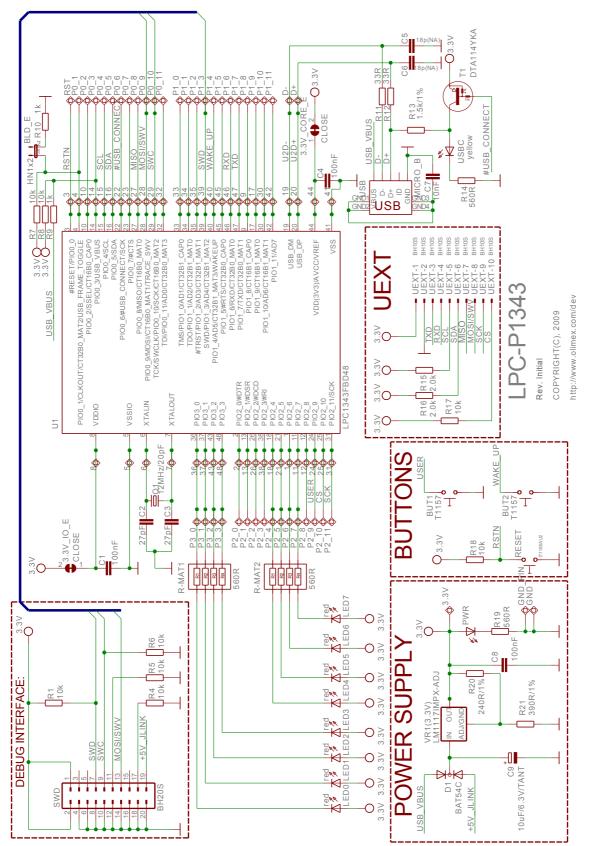
- I<sup>2</sup>C-bus interface supporting full I<sup>2</sup>C-bus specification and Fastmode Plus with a data rate of 1 Mbit/s with multiple address recognition and monitor mode.


- Other peripherals:

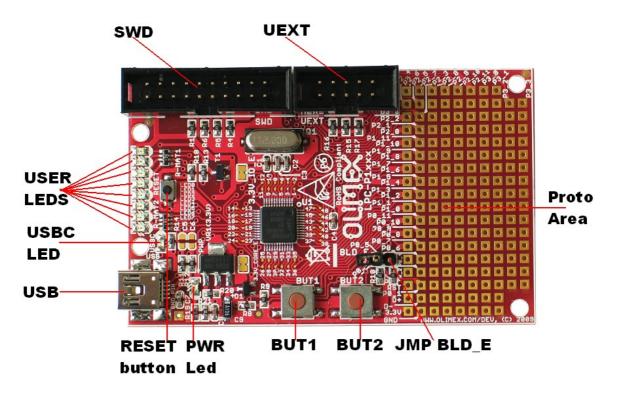
- 42 General Purpose I/O (GPIO) pins with configurable pullup/down resistors and a new, configurable open-drain operating mode.


- Four general purpose timers/counters, with a total of four capture inputs and 13 match outputs.

- Programmable WatchDog Timer (WDT).
- System tick timer.
- Serial Wire Debug and Serial Wire Trace Port.
- High-current output driver (20 mA) on one pin.
- High-current sink drivers (20 mA) on two I2C-bus pins in Fast-mode Plus.
- Integrated PMU (Power Management Unit) to minimize power consumption during Sleep, Deep-sleep, and Deep power-down modes.
- Three reduced power modes: Sleep, Deep-sleep, and Deep power-down.
- Single 3.3 V power supply (2.0 V to 3.6 V).
- 10-bit ADC with input multiplexing among 8 pins.
- 40 GPIO pins can be used as edge and level sensitive interrupt sources.
- Clock output function with divider that can reflect the main oscillator clock, IRC clock, CPU clock, Watchdog clock, and the USB clock.
- Processor wake-up from Deep-sleep mode via GPIO interrupts.
- Brownout detect with four separate thresholds for interrupt and one threshold for forced reset.
- Power-On Reset (POR).
- Crystal oscillator with an operating range of 1 MHz to 25 MHz.
- 12 MHz internal RC oscillator trimmed to 1 % accuracy that can optionally be used as a system clock.
- PLL allows CPU operation up to the maximum CPU rate without the need for a high-frequency crystal. May be run from the main oscillator, the internal RC oscillator, or the Watchdog oscillator.
- Code Read Protection (CRP) with different security levels.


#### **BLOCK DIAGRAM**




#### MEMORY MAP



#### **SCHEMATIC**



#### **BOARD LAYOUT**



#### **POWER SUPPLY CIRCUIT**

LPC-P1343 is power supplied +5V via USB, or via JTAG.

#### **RESET CIRCUIT**

LPC-P1343 reset circuit includes LPC1343 pin 3 (#RESET/PIO0\_0), R18 (10k) and RESET button.

#### **CLOCK CIRCUIT**

Quartz crystal 12 MHz is connected to LPC1343 pin 6 (XTALIN) and pin 7 (XTALOUT).

#### **JUMPER DESCRIPTION**

#### 3.3V\_CORE\_E



This jumper, when closed, enables microcontroller 3.3V power supply. <u>Default state is closed.</u>

#### 3.3V(I/O)\_E



This jumper, when closed, supplies 3.3 V voltage to LPC1343 pin 8 (VDDIO). Default state is closed.

## BLD\_E

If BLD\_E is closed during Reset and USB is connected to computer, then removable disk will appear in My computer. The user can create via IAR "\*.bin" file, which can be placed into the removable disk. After this when you open jumper BLD\_E and then reset the board the microcontroller will execute the program stored in the "\*.bin" file. Default state is open.

#### **INPUT/OUTPUT**

LED0 (red) connected via R-MAT1 to LPC1343 pin 36 (PIO3\_0).

LED1 (red) connected via R-MAT1 to LPC1343 pin 37 (PIO3\_1).

LED2 (red) connected via R-MAT1 to LPC1343 pin 43 (PIO3\_2).

LED3 (red) connected via R-MAT1 to LPC1343 pin 48 (PIO3\_3).

LED4 (red) connected via R-MAT2 to LPC1343 pin 18 (PIO2\_4).

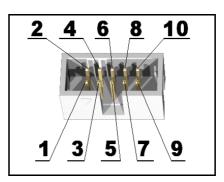
LED5 (red) connected via R-MAT2 to LPC1343 pin 21 (PIO2\_5).

LED6 (red) connected via R-MAT2 to LPC1343 pin 1 (PIO2\_6).

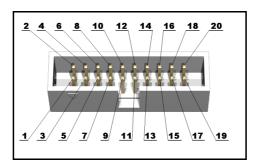
LED7 (red) connected via R-MAT2 to LPC1343 pin 11 (PIO2\_7).

USBC (yellow) shows that USB is connected.

**Power-on LED (red)** – this LED shows that +3.3V is applied to the board.


User button with name BUT1 (USER) connected to LPC1343 pin 24 (PIO2\_9).

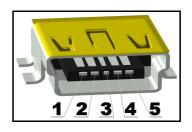
User button with name BUT2 connected to LPC1343 pin 40 (WAKEUP).


**Reset button** with name **RESET** connected to **LPC1343** pin 3 (#RESET/PIO0\_0).

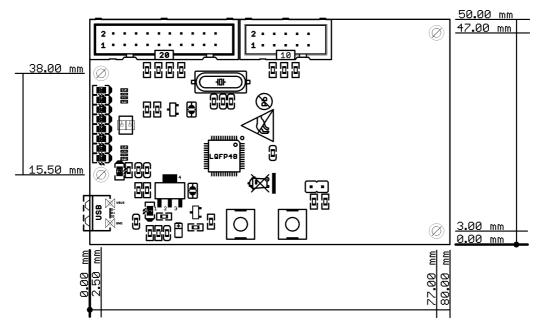
# EXTERNAL CONNECTORS DESCRIPTION UEXT

| Pin # | Signal Name |
|-------|-------------|
| 1     | 3.3V        |
| 2     | GND         |
| 3     | TXD         |
| 4     | RXD         |
| 5     | SCL         |
| 6     | SDA         |
| 7     | MISO        |
| 8     | MOSI/SWV    |
| 9     | SCK         |
| 10    | CS          |




<u>SWD</u>




| Pin # | Signal Name | Pin # | Signal Name |
|-------|-------------|-------|-------------|
| 1     | 3.3V        | 2     | 3.3V        |
| 3     | NC          | 4     | GND         |
| 5     | NC          | 6     | GND         |
| 7     | SWD         | 8     | GND         |
| 9     | SWC         | 10    | GND         |
| 11    | pull-down   | 12    | GND         |
| 13    | MOSI/SWV    | 14    | GND         |
| 15    | NC          | 16    | GND         |
| 17    | pull-down   | 18    | GND         |
| 19    | +5V_JLINK   | 20    | GND         |

#### <u>USB</u>

| Pin # | Signal Name |
|-------|-------------|
| 1     | USB_VBUS    |
| 2     | U2D-        |
| 3     | U2D+        |
| 4     | NC          |
| 5     | GND         |



#### **MECHANICAL DIMENSIONS**



#### AVAILABLE DEMO SOFTWARE

- LPC1343 demo examples project for EW-ARM

#### **ORDER CODE**

LPC-P1343 - assembled and tested board

#### How to order?

You can order directly from our web shop or by any of our distributors. The list of distributors may be found here: <u>https://www.olimex.com/Distributors/</u>

Check our web site <u>https://www.olimex.com/</u> for more info.

#### **Revision history**

Revision Initial, December 2009

Revision A, February 2011 - available demo software added

Revision B, May 2012 – fixed errors on page 9 regarding LED4 and LED5 processor pins

Revision C, February 2013 – updated links, disclaimer and suggested debuggers