

LT1469-2

GY Dual 200MHz, 30V/µs 16-Bit Accurate A_V ≥ 2 Op Amp

FEATURES

- Stable in Gain $A_V \ge 2$ ($A_V = -1$)
- 200MHz Gain Bandwidth Product
- 30V/µs Slew Rate
- Settling Time: 800ns (150µV, 10V Step)
- Specified at ±5V and ±15V Supplies
- Maximum Input Offset Voltage: 125µV
- Low Distortion: –96.5dB for 100kHz, 10V_{P-P}
- Maximum Input Offset Voltage Drift: 3µV/°C
- Maximum Inverting Input Bias Current: 10nA
- Minimum DC Gain: 300V/mV
- Minimum Output Swing into 2k: ±12.8V
- Input Noise Voltage: 5nV/√Hz
- Input Noise Current: 0.6pA/√Hz
- Total Input Noise Optimized for $1k\Omega < R_S < 20k\Omega$
- Available in 8-Lead Plastic SO and 12-Lead (4mm × 4mm) DFN Packages

APPLICATIONS

- Precision Instrumentation
- High Accuracy Data Acquisition Systems
- 16-Bit DAC Current-to-Voltage Converter
- ADC Buffer
- Low Distortion Active Filters

TYPICAL APPLICATION

Photodiode Amplifiers

DESCRIPTION

The LT®1469-2 is a dual, precision high speed operational amplifier with 16-bit accuracy, decompensated to be stable in a gain of 2 or greater. The combination of precision and AC performance makes the LT1469-2 the optimum choice for high accuracy applications such as DAC current-to-voltage conversion and ADC buffers. The initial accuracy and drift characteristics of the input offset voltage and inverting input bias current are tailored for inverting applications.

The 200MHz gain bandwidth ensures high open-loop gain at frequency for reducing distortion. In noninverting applications such as an ADC buffer, the low distortion and DC accuracy allow full 16-bit AC and DC performance. The high slew rate of the LT1469-2 improves large-signal performance in applications such as active filters and instrumentation amplifiers compared to other precision op amps.

The LT1469-2 is specified on power supply voltages of $\pm 5V$ and $\pm 15V$ and from -40° C to 85° C. It is available in an 8-lead SOIC package and a space saving 4mm × 4mm leadless package. For a unity-gain stable op amp with same DC performance, see the LT1469 datasheet.

Ω, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

Large-Signal Transient, $A_V = -1$

ABSOLUTE MAXIMUM RATINGS (Note 1)

PIN CONFIGURATION

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LT1469CS8-2#PBF	LT1469CS8-2#TRPBF	14692	8-Lead Plastic Small Outline	0°C to 70°C
LT1469IS8-2#PBF	LT1469IS8-2#TRPBF	14692	8-Lead Plastic Small Outline	-40°C to 85°C
LT1469ACDF-2#PBF	LT1469ACDF-2#TRPBF	14692	12-Lead (4mm × 4mm) Plastic DFN	0°C to 70°C
LT1469AIDF-2#PBF	LT1469AIDF-2#TRPBF	14692	12-Lead (4mm × 4mm) Plastic DFN	-40°C to 85°C
LT1469CDF-2#PBF	LT1469CDF-2#TRPBF	14692	12-Lead (4mm × 4mm) Plastic DFN	0°C to 70°C
LT1469IDF-2#PBF	LT1469IDF-2#TRPBF	14692	12-Lead (4mm × 4mm) Plastic DFN	-40°C to 85°C

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container. For more information on lead free part marking, go to: http://www.linear.com/leadfree/

For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. V_{CM} = 0V unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	V _{SUPPLY}	MIN	ТҮР	MAX	UNITS
V _{OS}	Input Offset Voltage	S8 Package	±15V ±5V		50 50	125 200	μV μV
		LT1469A, DF Package	±15V ±5V		50 50	125 200	μV μV
		LT1469, DF Package	±15V ±5V		100 150	225 300	μV μV
I _{OS}	Input Offset Current		±5V to ±15V		13	±50	nA

14692f

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. V_{CM} = 0V unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	V _{SUPPLY}	MIN	ТҮР	MAX	UNITS
I _B –	Inverting Input Bias Current		±5V to ±15V		3	±10	nA
I _B +	Noninverting Input Bias Current		±5V to ±15V		-10	±40	nA
	Input Noise Voltage	0.1Hz to 10Hz	±5V to ±15V		0.3		μV _{P-P}
e _n	Input Noise Voltage Density	f = 10kHz	±5V to ±15V		5		nV/√Hz
i _n	Input Noise Current Density	f = 10kHz	±5V to ±15V		0.6		pA/√Hz
R _{IN}	Input Resistance	Common Mode, V _{CM} = ±12.5V Differential	±15V ±15V	100 50	240 150		MΩ kΩ
CIN	Input Capacitance		±15V		4		pF
V _{CM}	Input Voltage Range (Positive)	Guaranteed by CMRR	±15V ±5V	12.5 2.5	13.5 3.6		V V
	Input Voltage Range (Negative)	Guaranteed by CMRR	±15V ±5V		-14.3 -4.4	-12.5 -2.5	V V
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 12.5V$ $V_{CM} = \pm 2.5V$	±15V ±5V	96 96	110 112		dB dB
	Minimum Supply Voltage	Guaranteed by PSRR			±2.5	±4.5	V
PSRR	Power Supply Rejection Ratio	$V_{\rm S} = \pm 4.5 V \text{ to } \pm 15 V$		100	112		dB
A _{VOL}	Large-Signal Voltage Gain	$ \begin{array}{l} V_{OUT} = \pm 12.5 V, \ R_L = 10 k \\ V_{OUT} = \pm 12.5 V, \ R_L = 2 k \\ V_{OUT} = \pm 2.5 V, \ R_L = 10 k \\ V_{OUT} = \pm 2.5 V, \ R_L = 2 k \end{array} $	±15V ±15V ±5V ±5V	300 300 200 200	2000 2000 8000 8000		V/mV V/mV V/mV V/mV
V _{OUT}	Maximum Output Swing	$ \begin{array}{l} R_L = 10k, \ 1mV \ Overdrive \\ R_L = 2k, \ 1mV \ Overdrive \\ R_L = 10k, \ 1mV \ Overdrive \\ R_L = 2k, \ 1mV \ Overdrive \\ \end{array} $	±15V ±15V ±5V ±5V	±13.0 ±12.8 ±3.0 ±2.8	±13.6 ±13.5 ±3.7 ±3.6		V V V V
I _{OUT}	Maximum Output Current	$V_{OUT} = \pm 12.5$ V, 1mV Overdrive $V_{OUT} = \pm 2.5$ V, 1mV Overdrive	±15V ±5V	±15 ±15	±22 ±22		mA mA
I _{SC}	Output Short-Circuit Current	V _{OUT} = 0V, 0.2V Overdrive (Note 3)	±15V	±25	±40		mA
SR	Slew Rate	$R_L = 2k$ (Note 6)	±15V ±5V	20 15	30 22		V/µs V/µs
FPBW	Full-Power Bandwidth	10V Peak, (Note 7) 3V Peak, (Note 7)	±15V ±5V		475 1160		kHz kHz
GBW	Gain Bandwidth Product	$f = 100$ kHz, $R_L = 2$ k	±15V ±5V	140 130	200 190		MHz MHz
ts	Settling Time	10V Step, 0.01%, $A_V = -1$ 10V Step, 150 μ V, $A_V = -1$	±15V ±15V		650 800		ns ns
R _{OUT}	Output Resistance	$A_V = -1, f = 100 \text{kHz}$	±15V		0.02		Ω
	Channel Separation		±15V ±5V	100 100	130 130		dB dB
ls	Supply Current	Per Amplifier	±15V ±5V		4.1 3.8	5.2 5	mA mA
ΔV _{OS}	Input Offset Voltage Match		±15V ±5V		30 50	225 350	μV μV
ΔI_{B} -	Inverting Input Bias Current Match		±5V to ±15V		2	18	nA
ΔI_{B} +	Noninverting Input Bias Current Match		±5V to ±15V		5	78	nA
∆CMRR	Common Mode Rejection Match	$V_{CM} = \pm 12.5V$ (Note 9) $V_{CM} = \pm 2.5V$ (Note 9)	±15V ±5V	93 93	113 115		dB dB
∆PSRR	Power Supply Rejection Match	$V_{\rm S} = \pm 4.5 V \text{ to } \pm 15 V \text{ (Note 9)}$		97	115		dB

14692f

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, $0^{\circ}C \le T_A \le 70^{\circ}C$. $V_{CM} = 0V$ unless otherwise noted.

SYMBOL PARAMETER CONDITIONS MIN TYP MAX VSUPPLY V_{OS} Input Offset Voltage ±15V 350 S8 Package ±5V 350 LT1469A, DF Package ±15V • 225 ±5V 275 LT1469, DF Package ±15V 450 • ±5V 450 $\Delta V_{OS}/\Delta T$ Input Offset Voltage Drift ±15V 1 5 (Note 8) 3 ±5V 1 Input Offset Current ±5V to ±15V ±80 los • Input Offset Current Drift $\Delta I_{0S} / \Delta T$ (Note 8) ±5V to ±15V • 60 Inverting Input Bias Current ±5V to ±15V ±20 • $I_{B} \Delta I_{B} - \Delta T$ Inverting Input Bias Current Drift ±5V to ±15V 40 (Note 8) Noninverting Input Bias Current ±5V to ±15V $I_{B}+$ • ±60 V_{CM} Input Voltage Range (Positive) Guaranteed by CMRR ±15V 12.5 ±5V • 2.5 -12.5 Guaranteed by CMRR Input Voltage Range (Negative) ±15V • ±5V -2.5 CMRR **Common Mode Rejection Ratio** $V_{CM} = \pm 12.5V$ ±15V • 94 ±5V $V_{CM} = \pm 2.5 V$ 94 Minimum Supply Voltage Guaranteed by PSRR • ±4.5 PSRR $V_{S} = \pm 4.5V \text{ to } \pm 15V$ Power Supply Rejection Ratio 95 Large-Signal Voltage Gain $V_{0UT} = \pm 12.5 V, R_1 = 10 k$ ±15V 100 Avol • $V_{OUT} = \pm 12.5 V, R_L = 2k$ ±15V 100 $V_{OUT} = \pm 2.5 V, R_L = 10 k$ ±5V • 100 $V_{OUT} = \pm 2.5 V, R_{L} = 2k$ ±5V 100 VOUT R_I = 10k, 1mV Overdrive Maximum Output Swing ±15V ±12.9 • $R_I = 2k$, 1mV Overdrive ±15V ±12.7 • ±2.9 $R_{L}^{-} = 10k$, 1mV Overdrive ±5V $R_{L} = 2k$, 1mV Overdrive ±5V ±2.7 V_{OUT} = ±12.5V, 1mV Overdrive ±12.5 Maximum Output Current ±15V IOUT • $V_{OUT} = \pm 2.5 V$, 1mV Overdrive ±12.5 ±5V V_{OUT} = 0V, 0.2V Overdrive (Note 3) **Output Short-Circuit Current** ±15V • ±17 Isc SR Slew Rate $R_1 = 2k$ (Note 6) ±15V 18 ±5V 13 GBW 130 200 Gain Bandwidth Product $f = 100 kHz, R_1 = 2k$ ±15V • 120 190 ±5V **Channel Separation** $V_{OUT} = \pm 12.5 V, R_L = 2k$ ±15V • 98 $V_{OUT} = \pm 2.5 V$, $R_L = 2k$ ±5V • 98 Per Amplifier ±15V 6.5 ls Supply Current ±5V 6.3 • ΔV_{0S} Input Offset Voltage Match ±15V • 600 ±5V • 600 $\Delta I_B -$ Inverting Input Bias Current Match ±5V to ±15V 38 Noninverting Input Bias Current Match ±5V to ±15V 118 $\Delta l_{B}+$ • ∆CMRR Common Mode Rejection Match $V_{CM} = \pm 12.5V$ (Note 9) ±15V 91

 $V_{CM} = \pm 2.5V$ (Note 9)

 $V_{S} = \pm 4.5V$ to $\pm 15V$ (Note 9)

14692f

UNITS

μV

μV

μV μV

μV

μV

µV/°C

μV/°C

nA pA/°C

nA

nA V

V

V

V

dB

dB

V

dB

V/mV

V/mV

V/mV

V/mV V

V

V

V

mΑ

mΑ

mΑ

V/µs

V/µs

MHz

MHz

dB

dB

mΑ

mΑ

μV

μV

nA

nA

dB

dB

dB

pA/°C

•

•

91

92

±5V

ΔPSRR

Power Supply Rejection Match

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, -40°C \leq T_A \leq 85°C, V_{CM} = 0V unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS	VSUPPLY		MIN	ТҮР	MAX	UNITS
V _{OS}	Input Offset Voltage	S8 Package	±15V ±5V	•			500 500	μV μV
		LT1469A, DF Package	±15V ±5V	•			300 350	μV μV
		LT1469, DF Package	±15V ±5V	•			600 600	μV μV
$\Delta V_{0S} / \Delta T$	Input Offset Voltage Drift	(Note 8)	±15V ±5V	•		1 1	6 5	μV/°C μV/°C
I _{OS}	Input Offset Current		±5V to ±15V	•			±120	nA
$\Delta I_{0S} / \Delta T$	Input Offset Current Drift	(Note 8)	±5V to ±15V	•		120		pA/°C
I _B –	Inverting Input Bias Current		±5V to ±15V	•			±40	nA
ΔI_{B} —/ ΔT	Inverting Input Bias Current Drift	(Note 8)	±5V to ±15V	•		80		pA/°C
I _B +	Noninverting Input Bias Current		±5V to ±15V	•			±80	nA
V _{CM}	Input Voltage Range (Positive)	Guaranteed by CMRR	±15V ±5V	•	12.5 2.5			V V
	Input Voltage Range (Negative)	Guaranteed by CMRR	±15V ±5V	•			-12.5 -2.5	V V
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 12.5V$ $V_{CM} = \pm 2.5V$	±15V ±5V	•	92 92		±4.5	dB dB
	Minimum Supply Voltage	Guaranteed by PSRR		•				V
PSRR	Power Supply Rejection Ratio	V _S = ±4.5V to ±15V		•	93			dB
A _{VOL}	Large-Signal Voltage Gain	$V_{OUT} = \pm 12,5V$, $R_L = 10k$ $V_{OUT} = \pm 12.5V$, $R_L = 2k$ $V_{OUT} = \pm 2.5V$, $R_L = 10k$ $V_{OUT} = \pm 2.5V$, $R_L = 2k$	±15V ±15V ±5V ±5V	•	75 75 75 75 75			V/mV V/mV V/mV V/mV
V _{OUT}	Maximum Output Swing	$\begin{array}{l} R_L = 10k, 1mV \mbox{ Overdrive} \\ R_L = 2k, 1mV \mbox{ Overdrive} \\ R_L = 10k, 1mV \mbox{ Overdrive} \\ R_L = 2k, 1mV \mbox{ Overdrive} \end{array}$	±15V ±15V ±5V ±5V	• • •	±12.8 ±12.6 ±2.8 ±2.6			V V V V
I _{OUT}	Maximum Output Current	$V_{OUT} = \pm 12.5$ V, 1mV Overdrive $V_{OUT} = \pm 2.5$ V, 1mV Overdrive	±15V ±5V	•	±7 ±7			mA mA
I _{SC}	Output Short-Circuit Current	V _{OUT} = 0V, 0.2V Overdrive (Note 3)	±15V	•	±12			mA
SR	Slew Rate	$R_L = 2k$ (Note 6)	±15V ±5V	•	15 11			V/µs V/µs
GBW	Gain Bandwidth Product	$f = 100$ kHz, $R_L = 2$ k	±15V ±5V	•	110 100	200 190		MHz MHz
	Channel Separation	$V_{OUT} = \pm 12.5$ V, R _L = 2k V _{OUT} = ±2.5V, R _L = 2k	±15V ±5V	•	96 96			dB dB
I _S	Supply Current	Per Amplifier	±15V ±5V	•			7 6.8	mA mA
ΔV_{OS}	Input Offset Voltage Match		±15V ±5V	•			800 800	μV μV
$\Delta I_B -$	Inverting Input Bias Current Match		±5V to ±15V	•			78	nA
ΔI_{B} +	Noninverting Input Bias Current Match		±5V to ±15V	•			158	nA
∆CMRR	Common Mode Rejection Match	$V_{CM} = \pm 12.5V \text{ (Note 9)}$ $V_{CM} = \pm 2.5V \text{ (Note 9)}$	±15V ±5V	•	89 89			dB dB
∆PSRR	Power Supply Rejection Match	$V_S = \pm 4.5V$ to $\pm 15V$ (Note 9)		•	90			dB

ELECTRICAL CHARACTERISTICS

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: The inputs are protected by back-to-back diodes and two 100Ω series resistors. If the differential input voltage exceeds 0.7V, the input current should be limited to less than 10mA. Input voltages outside the supplies will be clamped by ESD protection devices and input currents should also be limited to less than 10mA.

Note 3: A heat sink may be required to keep the junction temperature below absolute maximum when the output is shorted indefinitely.

Note 4: The LT1469C-2 and LT1469I-2 are guaranteed functional over the operating temperature range of -40° C to 85° C.

Note 5: The LT1469C-2 is guaranteed to meet specified performance from 0°C to 70°C and is designed, characterized and expected to meet specified performance from -40°C to 85°C but is not tested or QA sampled at these temperatures. The LT1469I-2 is guaranteed to meet specified performance from -40°C to 85°C.

Note 6: Slew rate is measured between $\pm 8V$ on the output with $\pm 12V$ swing for $\pm 15V$ supplies and $\pm 2V$ on the output with $\pm 3V$ swing for $\pm 5V$ supplies. Tested in A_V = -10

Note 7: Full-power bandwidth is calculated from the slew rate. FPBW = $SR/2\pi V_P$.

Note 8: This parameter is not 100% tested.

Note 9: Δ CMRR and Δ PSRR are defined as follows: 1) CMRR and PSRR are measured in μ V/V on each amplifier; 2) the difference between the two sides is calculated in μ V/V; 3) the result is converted to dB.

TYPICAL PERFORMANCE CHARACTERISTICS

6

18

TYPICAL PERFORMANCE CHARACTERISTICS

14692 G15

14692 G13

TYPICAL PERFORMANCE CHARACTERISTICS

APPLICATIONS INFORMATION

Gain of 2 Stable

The LT1469-2 is a decompensated version of the LT1469. The DC precision performance is identical, but the internal compensation capacitors have been reduced to a point where the op amp needs a gain of 2 or greater in order to be stable.

In general, for applications where the gain around the op amp is ≥ 2 , the decompensated version should be used, because it will give the best AC performance. In applications where the gain is <2, the unity-gain stable version should be used.

The appropriate way to define the 'gain' is as the inverse of the feedback ratio from output to differential input, including all relevant parasitics. Moreover, as with all feedback loops, the stability of the loop depends on the value of that feedback ratio at frequencies where the total loop-gain would cross unity. Therefore, it is possible to have circuits in which the gain at DC is lower than the gain at high frequency, and these circuits can be stable even with a non unity-gain stable op amp. An example is many current-output DAC buffer applications.

Layout and Passive Components

The LT1469 requires attention to detail in board layout in order to maximize DC and AC performance. For best AC results (for example, fast settling time) use a ground plane, short lead lengths and RF quality bypass capacitors (0.01μ F to 0.1μ F) in parallel with low ESR bypass capacitors (1μ F to 10μ F tantalum). For best DC performance, use "star" grounding techniques, equalize input trace lengths and minimize leakage (e.g., $1.5G\Omega$ of leakage between an

Figure 1. Nulling Input Capacitance

input and a 15V supply will generate 10nA—equal to the maximum I_B - specification).

Board leakage can be minimized by encircling the input circuitry with a guard ring operated at a potential close to that of the inputs: for inverting configurations tie the ring to ground, in noninverting connections tie the ring to the inverting input (note the input capacitance will increase which may require a compensating capacitor as discussed below).

Microvolt level error voltages can also be generated in the external circuitry. Thermocouple effects caused by temperature gradients across dissimilar metals at the contacts to the inputs can exceed the inherent drift of the amplifier. Air currents over device leads should be minimized, package leads should be short and the two input leads should be as close together as possible and maintained at the same temperature.

The parallel combination of the feedback resistor and gain setting resistor on the inverting input can combine with the input capacitance to form a pole which can cause peaking or even oscillations. A feedback capacitor of value $C_F = R_G \cdot C_{IN}/R_F$ may be used to cancel the input pole and optimize dynamic performance. For applications where the DC noise gain is one, and a large feedback resistor is used, C_F should be less than or equal to one half of C_{IN} . An example would be a DAC I-to-V converter as shown on the front page of the data sheet where the DAC can have many tens of picofarads of output capacitance.

Figure 2. Input Stage Protection

APPLICATIONS INFORMATION

Input Considerations

Each input of the LT1469 is protected with a 100Ω series resistor and back-to-back diodes across the bases of the input devices. If large differential input voltages are anticipated, limit the input current to less than 10mA with an external series resistor. Each input also has two ESD clamp diodes—one to each supply. If an input is driven beyond the supply, limit the current with an external resistor to less than 10mA.

The LT1469 employs bias current cancellation at the inputs. The inverting input current is trimmed at zero common mode voltage to minimize errors in inverting applications such as I-to-V converters. The noninverting input current is not trimmed and has a wider variation and therefore a larger maximum value. As the input offset current can be greater than either input current, the use of balanced source resistance is NOT recommended as it actually degrades DC accuracy and also increases noise. The input bias currents vary with common mode voltage. The cancellation circuitry was not designed to track this common mode voltage because the settling time would have been adversely affected.

The LT1469 inputs can be driven to the negative supply and to within 0.5V of the positive supply without phase reversal. As the input moves closer than 0.5V to the positive supply, the output reverses phase.

Total Input Noise

The total input noise of the LT1469 is optimized for a source resistance between 1k and 20k. Within this range, the total input noise is dominated by the noise of the source resistance itself. When the source resistance is below 1k, voltage noise of the amplifier dominates. When the source resistance is above 20k, the input noise current is the dominant contributor.

SIMPLIFIED SCHEMATIC

146921

PACKAGE DESCRIPTION

S8 Package 8-Lead Plastic Small Outline (Narrow 0.150) (Reference LTC DWG # 05-08-1610)

DF Package 12-Lead Plastic DFN (4mm × 4mm) (Reference LTC DWG # 05-08-1773 Rev Ø)

- 6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE

