

LT5520

1.3GHz to 2.3GHz High Linearity Upconverting Mixer

- **Wide RF Output Frequency Range: 1.3GHz to 2.3GHz**
- **15.9dBm Typical Input IP3 at 1.9GHz**
- **On-Chip RF Output Transformer**
- **No External LO or RF Matching Required**
- **Single-Ended LO and RF Operation**
- **Integrated LO Buffer: –5dBm Drive Level**
- **Low LO to RF Leakage: 41dBm Typical**
- Wide IF Frequency Range: DC to 400MHz
- Enable Function with Low Off-State Leakage Current
- Single 5V Supply
- Small 16-Lead QFN Plastic Package

BUDDER Small 16-Lead QFN P
APPLICATIONS

- Wireless Infrastructure
- Cable Downlink Infrastructure
- Point-to-Point Data Communications
- High Linearity Frequency Conversion

FEATURES DESCRIPTIO U

The LT®5520 mixer is designed to meet the high linearity requirements of wireless and cable infrastructure transmission applications. A high-speed, internally matched, LO amplifier drives a double-balanced mixer core, allowing the use of a low power, single-ended LO source. An RF output transformer is integrated, thus eliminating the need for external matching components at the RF output, while reducing system cost, component count, board area and system-level variations. The IF port can be easily matched to a broad range of frequencies for use in many different applications.

The LT5520 mixer delivers 15.9dBm typical input 3rd order intercept point at 1.9GHz with IF input signal levels of –10dBm. The input 1dB compression point is typically 4dBm. The IC requires only a single 5V supply.

 \sqrt{J} , LTC and LT are registered trademarks of Linear Technology Corporation.

Figure 1. Frequency Conversion in Wireless Infrastructure Transmitter

TYPICAL APPLICATION

ABSOLUTE MAXIMUM RATINGS PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS

1900MHz Application: $V_{CC} = 5V_{DC}$, EN = High, T_A = 25°C, IF input = 140MHz at -10dBm, LO input = 1.76GHz at -5dBm, RF output **measured at 1900MHz, unless otherwise noted. Test circuit shown in Figure 2. (Notes 2, 3)**

DC ELECTRICAL CHARACTERISTICS

(Test Circuit Shown in Figure 2) $V_{CC} = 5V_{DC}$, EN = High, T_A = 25°C (Note 3), unless otherwise noted.

DC ELECTRICAL CHARACTERISTICS

(Test Circuit Shown in Figure 2) $V_{CC} = 5V_{DC}$, EN = High, T_A = 25°C (Note 3), unless otherwise noted.

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: External components on the final test circuit are optimized for operation at f_{RF} = 1900MHz, f_{LO} = 1.76GHz and f_{IF} = 140MHz.

Note 3: Specifications over the –40°C to 85°C temperature range are assured by design, characterization and correlation with statistical process controls.

Note 4: Turn-On and Turn-Off times are based on the rise and fall times of the RF output envelope from full power to –40dBm with an IF input power of –10dBm.

TYPICAL PERFORMANCE CHARACTERISTICS (Test Circuit Shown in Figure 2)

TYPICAL PERFORMANCE CHARACTERISTICS

VCC = 5VDC, EN = High , TA = 25°**C, IF input = 140MHz at –10dBm, LO input = 1.76GHz at –5dBm, RF output measured at 1900MHz, unless otherwise noted. For 2-tone inputs: 2nd IF Input = 141MHz at –10dBm. (Test Circuit Shown in Figure 2.)**

PIN FUNCTIONS

GND (Pins 1, 4, 9, 12, 13, 16): Internal Grounds. These pins are used to improve isolation and are not intended as DC or RF grounds for the IC. Connect these pins to low impedance grounds for best performance.

IF+, IF– (Pins 2, 3): Differential IF Signal Inputs. A differential signal must be applied to these pins through DC blocking capacitors. The pins must be connected to ground with 100 Ω resistors (the grounds must each be capable of sinking about 18mA). For best LO leakage performance, these pins should be DC isolated from each other. An impedance transformation is required to match the IF input to the desired source impedance (typically 50 Ω or 75Ω).

EN (Pin 5): Enable Pin. When the applied voltage is greater than 3V, the IC is enabled. When the applied voltage is less than 0.5V, the IC is disabled and the DC current drops to about 1µA.

V_{CC1} (Pin 6): Power Supply Pin for the Bias Circuits. Typical current consumption is about 2mA. This pin should be externally connected to V_{CC} and have appropriate RF bypass capacitors.

V_{CC2} (Pin 7): Power Supply Pin for the LO Buffer Circuits. Typical current consumption is about 22mA. This pin should have appropriate RF bypass capacitors as shown in Figure 2. The 1000pF capacitor should be located as close to the pins as possible.

V_{CC3} (Pin 8): Power Supply Pin for the Internal Mixer. Typical current consumption is about 36mA. This pin should be externally connected to V_{CC} through an inductor. A 39nH inductor is used in Figure 2, though the value is not critical.

RF–, RF+ (Pins 10, 11): Differential RF Outputs. One pin may be DC connected to a low impedance ground to realize a 50Ω single-ended output. No external matching components are required. A DC voltage should not be applied across these pins, as they are internally connected through a transformer winding.

LO+, LO– (Pins 14, 15): Differential Local Oscillator Inputs. The LT5520 works well with a single-ended source driving the LO^+ pin and the LO^- pin connected to a low impedance ground. No external matching components are required. An internal resistor is connected across these pins; therefore, a DC voltage should not be applied across the inputs.

GROUND (Pin 17, Exposed Pad): DC and RF ground return for the entire IC. This must be soldered to the printed circuit board low impedance ground plane.

BLOCK DIAGRAM

TEST CIRCUIT

APPLICATIONS INFORMATION

The LT5520 consists of a double-balanced mixer, a highperformance LO buffer, and bias/enable circuits. The RF and LO ports may be driven differentially; however, they are intended to be used in single-ended mode by connecting one input of each pair to ground. The IF input ports must be DC-isolated from the source and driven differentially. The IF input should be impedance-matched for the desired input frequency. The LO input has an internal broadband 50Ω match with return loss better than 10dB at frequencies up to 3000MHz. The RF output band ranges from 1300MHz to 2300MHz, with an internal RF transformer providing a 50 Ω impedance match across the band. Low side or high side LO injection can be used.

IF Input Port

The IF inputs are connected to the emitters of the doublebalanced mixer transistors, as shown in Figure 3. These pins are internally biased and an external resistor must be connected from each IF pin to ground to set the current through the mixer core. The circuit has been optimized to work with 100Ω resistors, which will result in approximately 18mA of DC current per side. For best LO leakage performance, the resistors should be well matched; thus

resistors with 0.1%, tolerance are recommended. If LO leakage is not a concern, then lesser tolerance resistors can be used. The symmetry of the layout is also important for achieving optimum LO isolation.

The capacitors shown in Figure 3, C1 and C2, serve two purposes. They provide DC isolation between the IF+ and IF^- ports, thus preventing DC interactions that could cause unpredictable variations in LO leakage. They also improve the impedance match by canceling excess inductance in the package and transformer. The input capacitor value required to realize an impedance match at desired frequency, f, can be estimated as follows:

$$
C_1 = C_2 = \frac{1}{(2\pi f)^2 (L_{IN} + L_{EXT})}
$$

where; f is in units of Hz, L_{IN} and L_{EXT} are in H, and C1, C2 are in farad. L_{IN} is the differential input inductance of the LT5520, and is approximately 1.67nH. L_{EXT} represents the combined inductances of differential external components and transmission lines. For the evaluation board shown in Figure 10, $L_{\text{EXT}} = 4.21 \text{nH}$. Thus, for f = 140MHz, the above formula gives $C1 = C2 = 220pF$.

Figure 3. IF Input with External Matching

Table 1 lists the differential IF input impedance and reflection coefficient for several frequencies. A 4:1 balun can be used to transform the impedance up to about 50Ω .

LO Input Port

The simplified circuit for the LO buffer input is shown in Figure 4. The LO buffer amplifier consists of high-speed limiting differential amplifiers, optimized to drive the mixer quad for high linearity. The $LO⁺$ and $LO⁻$ ports can be driven differentially; however, they are intended to be driven by a single-ended source. An internal resistor connected across the LO^+ and LO^- inputs provides a broadband 50Ω impedance match. Because of the resistive match, a DC voltage at the LO input is not recommended. If the LO signal source output is not AC coupled, then a DC blocking capacitor should be used at the LO input.

Figure 4. LO Input Circuit

Though the LO input is internally 50Ω matched, there may be some cases, particularly at higher frequencies or with different source impedances, where a further optimized match is desired. Table 2 includes the single -ended input impedance and reflection coefficient vs frequency for the LO input for use in such cases.

Table 2. Single-Ended LO Input Impedance

Frequency	Input	S11	
(MHz)	Impedance	Maq	Angle
1300	$62.8 - j9.14$	0.139	-30.9
1500	$62.2 - j11.4$	0.148	-37.1
1700	$61.5 - j13.4$	0.157	-42.4
1900	$60.0 - j15.2$	0.164	-48.9
2100	$58.4 - j16.9$	0.172	-54.7
2300	$56.5 - j17.9$	0.176	-60.4
2500	$54.9 - j18.8$	0.182	-65.1
2700	$53.7 - j18.8$	0.182	-68.5

RF Output Port

An internal RF transformer, shown in Figure 5, reduces the mixer-core impedance to provide an impedance of 50Ω across the RF+ and RF– pins. The LT5520 is designed and tested with the outputs configured for single-ended operation, as shown in the Figure 5; however, the outputs can be used differentially as well. A center-tap in the transformer provides the DC connection to the mixer core and the transformer provides DC isolation at the RF output. The RF⁺ and RF⁻ pins are connected together through the secondary windings of the transformer, thus a DC voltage should not be applied across these pins.

The impedance data for the RF output, listed in Table 3, can be used to develop matching networks for different load impedances.

Table 3. Single-Ended RF Output Impedance

Figure 5. RF Output Circuit

Operation at Different Input Frequencies

On the evaluation board shown in Figure 10, the input of the LT5520 can be easily matched for different frequencies by changing the input capacitors, C1 and C2. Table 4 lists some actual values used at selected frequencies.

The performance was evaluated with the input tuned for each of these frequencies and the results are summarized in Figures 6-8. The same IF input balun transformer was used for all measurements. In each case, the LO input frequency was adjusted to maintain an RF output frequency of 1900 MHz.

Figure 6. Conversion Gain and IIP3 vs Tuned IF Input Frequency

Figure 7. SSB Noise Figure vs Tuned IF Input Frequency

Figures 6-8 illustrate the performance versus tuned IF input frequency with both high side and low side LO injection. Figure 6 shows the measured conversion gain and IIP3. The noise figure is plotted in Figure 7 for LO power levels of –5dBm and 0dBm. At lower input frequencies, the LO power level has little impact on noise figure. However, for higher frequencies, an increased LO drive level may be utilized to achieve better noise figure. The single-tone IIP2 behavior is illustrated in Figure 8.

Low Frequency Matching of the RF Output Port

Without any external components on the RF output, the internal transformer of the LT5520 provides a good 50 Ω impedance match for RF frequencies above approximately 1600MHz. At frequencies lower than this, the return loss drops below 10dB and degrades the conversion gain. The addition of a single 3.3pF capacitor in series with the RF output improves the match at lower RF frequencies, shifting the 10dB return loss point to about 1300MHz, as demonstrated in Figure 9. This change also results in an improvement of the conversion gain, as shown in Figure 9.

Figure 8. IIP2 vs Tuned IF Input Frequency Figure 9. Conversion Gain and Return Loss vs Output Frequency

(10a) Top Layer Silkscreen (10b) Top Layer Metal

5520f

U PACKAGE DESCRIPTIO

UF Package

3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE
- MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE
4. EXPOSED PAD SHALL BE SOLDER PLATED

