

Single, Dual and Quad, 1.8V, 13µA Precision Rail-to-Rail Op Amps

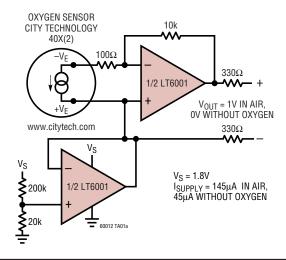
FEATURES

- Ideal for Battery-Powered Applications
 - Low Voltage: 1.8V to 16V Operation
 - Low Current: 16µA/Amplifier Max
 - Small Packages: DFN, MSOP, SSOP
 - Shutdown to 1.5µA Max (LT6000, LT6001DD)
- Low Offset Voltage: 600µV Max
- Rail-to-Rail Input and Output
- Fully Specified on 1.8V and 5V Supplies
- Operating Temperature Range: -40°C to 85°C
- Single Available in DFN
 Dual Available in MSOP and DFN
 Quad Available in SSOP and DFN

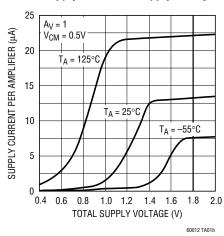
APPLICATIONS

- Gas Sensing
- Portable Instrumentation
- Battery- or Solar-Powered Systems
- Low Voltage Signal Processing
- Micropower Active Filters

DESCRIPTION


The LT $^{\circ}$ 6000/LT6001/LT6002 are single, dual and quad precision rail-to-rail input and output operational amplifiers. Designed to maximize battery life in always-on applications, the devices will operate on supplies down to 1.8V while drawing only 13 μ A quiescient current. The low supply current and low voltage operation is combined with precision specifications; input offset is guaranteed less than 600 μ V. The performance on 1.8V supplies is fully specified and guaranteed over temperature. A shutdown feature available in the LT6000 and the 10-lead dual LT6001 version can be used to extend battery life by allowing the amplifiers to be switched off during periods of inactivity.

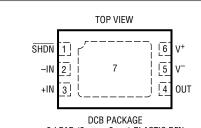
The LT6000 is available in a tiny, dual fine pitch leadless DFN package. The LT6001 is available in the 8-pin MSOP package; a 10-lead version with the shutdown feature is available in DFN package. The quad LT6002 is available in the 16-pin SSOP package and the 16-pin DFN package. These devices are specified over the commercial and industrial temperature range.


(T), LTC and LT are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

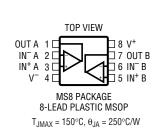
TYPICAL APPLICATION

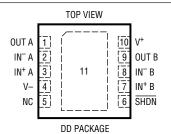
Micropower Oxygen Sensor

Start-Up Characteristics Supply Current vs Supply Voltage

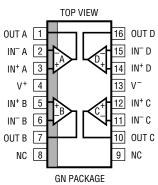


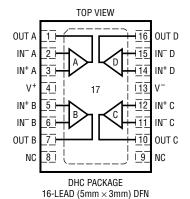
ABSOLUTE MAXIMUM RATINGS (Note 1)


18V
±10mA
V ⁻ to V ⁺
Indefinite
0°C to 85°C
O°C to 85°C
150°C


Junction Temperature (DFN Packages)	
Storage Temperature Range—65°C to 150 Storage Temperature Range	J°U
DFN Packages—65°C to 125	5°C
Lead Temperature (Soldering, 10 sec) MSOP, SSOP Packages	0°C

PACKAGE/ORDER INFORMATION


6-LEAD (2mm \times 3mm) PLASTIC DFN $T_{JMAX}=125^{\circ}\text{C},\,\theta_{JA}=160^{\circ}\text{C/W}\,\,(\text{NOTE}\,\,2)$ EXPOSED PAD (PIN 7) IS CONNECTED TO V $^{-}$ (PIN 5)



10-LEAD (3mm \times 3mm) PLASTIC DFN $T_{JMAX} = 125^{\circ}C, \, \theta_{JA} = 160^{\circ}C/W \; (NOTE \; 2)$ EXPOSED PAD (PIN 11) IS CONNECTED TO V $^-$ (PIN 4)

ORDER PART	DCB PART	ORDER PART	MS8 PART	ORDER PART	DD PART
NUMBER	MARKING*	NUMBER	MARKING*	NUMBER	MARKING*
LT6000CDCB	LCDM	LT6001CMS8	LTBVD	LT6001CDD	LBVH
LT6000IDCB	LCDM	LT6001IMS8	LTBVD	LT6001IDD	LBVH

GN PACKAGE 16-LEAD NARROW PLASTIC SSOP T_{JMAX} = 150°C, θ_{JA} = 135°C/W

 $T_{JMAX}=125^{\circ}C,~\theta_{JA}=160^{\circ}C/W~(NOTE~2)$ EXPOSED PAD (PIN 17) IS CONNECTED TO V $^{-}$ (PIN 13)

ORDER PART NUMBER	GN PART MARKING	ORDER PART NUMBER	DHC PART MARKING*
LT6002CGN	6002	LT6002CDHC	6002
LT6002IGN	60021	LT6002IDHC	6002

Order Options Tape and Reel: Add #TR

Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF

Lead Free Part Marking: http://www.linear.com/leadfree/

^{*}Temperature grades are identified on the shipping container. Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS The \bullet denotes specifications which apply over the full specified temperature range, otherwise specifications are $T_A = 25\,^{\circ}$ C. $V_S = 1.8V$, 0V, $V_{CM} = V_{OUT} = 0.5V$. For the LT6000 and the LT6001DD, $V_{\overline{SHDN}} = V^+$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	$ \begin{array}{l} LT6001MS8 \\ 0^{\circ}C \leq T_{A} \leq 70^{\circ}C \\ -40^{\circ}C \leq T_{A} \leq 85^{\circ}C \end{array} $	•		200	600 800 950	μV μV μV
		LT6000DCB, LT6001DD, LT6002GN $0^{\circ}C \le T_A \le 70^{\circ}C$ $-40^{\circ}C \le T_A \le 85^{\circ}C$	•		250	750 1000 1200	μV μV μV
		$ \begin{array}{l} LT6002DHC \\ 0^{\circ}C \leq T_{A} \leq 70^{\circ}C \\ -40^{\circ}C \leq T_{A} \leq 85^{\circ}C \end{array} $	•		300	900 1100 1300	μV μV μV
		V _{CM} = V ⁺ LT6001MS8	•		400	1000 1300	μV μV
		V _{CM} = V ⁺ LT6000DCB, LT6001DD, LT6002GN	•		500	1200 1550	μV μV
		V _{CM} = V ⁺ LT6002DHC	•		500	1300 1700	μV μV
$\Delta V_{OS}/\Delta T$	Input Offset Voltage Drift (Note 5)	$V_{CM} = 0.5V$	•		2	5	μV/°C
I _B	Input Bias Current	$V_{CM} = 0.5V$ $V_{CM} = V^ V_{CM} = V^+$	•	–5 –5	-2 -2 4	10	nA nA nA
I _{OS}	Input Offset Current	$V_{CM} = 0.5V$ $V_{CM} = V^ V_{CM} = V^+$	•		0.2 0.2 0.4	1 1 2	nA nA nA
	Input Noise Voltage	0.1Hz to 10Hz			1.2		μV _{P-P}
e _n	Input Voltage Noise Density	f = 1kHz			75		nV/√Hz
i _n	Input Current Noise Density	f = 1kHz			25		fA/√Hz
R _{IN}	Input Resistance	Common Mode (V _{CM} = 0V to 0.6V) Differential		10	3.5 25		GΩ MΩ
C _{IN}	Input Capacitance				5		pF
CMRR	Common Mode Rejection Ratio	$\begin{array}{l} V_{CM}=0V~to~0.6V,~0^{\circ}C\leq T_{A}\leq 70^{\circ}C\\ V_{CM}=0.1V~to~0.6V,~-40^{\circ}C\leq T_{A}\leq 85^{\circ}C\\ V_{CM}=0V~to~1.8V \end{array}$	•	82 82 60	96 96 78		dB dB dB
	Input Voltage Range		•	0		1.8	V
PSRR	Power Supply Rejection Ratio	$V_S = 1.8V \text{ to } 16V$ $V_{CM} = V_0 = 0.5V$	•	86	100		dB
	Minimum Supply	$V_{CM} = V_{O} = 0.5V$	•	1.8			V
A _{VOL}	Large-Signal Gain	$\begin{split} V_0 &= 0.25 \text{V to } 1.25 \text{V} \\ R_L &= 100 \text{k to GND} \\ R_L &= 100 \text{k to GND} \\ R_L &= 10 \text{k to GND} \\ R_L &= 10 \text{k to GND} \\ R_L &= 10 \text{k to GND} \end{split}$	•	25 20 40 25	65 125		V/mV V/mV V/mV V/mV
V _{OL}	Output Swing Low (Note 6)	Input Overdrive = 30mV No Load I _{SINK} = 100μA	•		30 120	60 200	mV mV
$\overline{V_{OH}}$	Output Swing High (Note 6)	Input Overdrive = 30mV No Load ISOURCE = 100µA R _L = 10k to GND	•		30 140 160	60 225 250	mV mV mV

ELECTRICAL CHARACTERISTICS The • denotes specifications which apply over the full specified temperature range, otherwise specifications are $T_A = 25^{\circ}C$. $V_S = 1.8V$, OV, $V_{CM} = V_{OUT} = 0.5V$. For the LT6000 and the LT6001DD, $V_{\overline{SHDN}} = V^+$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
I _{SC}	Short-Circuit Current	Short to GND $0^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 70^{\circ}\text{C}$ $-40^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 85^{\circ}\text{C}$	•	2 1 0.4	4		mA mA mA
		Short to V ⁺ 0° C \leq T _A \leq 70 $^{\circ}$ C -40° C \leq T _A \leq 85 $^{\circ}$ C	•	0.7 0.4 0.15	2		mA mA mA
Is	Supply Current per Amplifier	$0^{\circ}C \le T_{A} \le 70^{\circ}C$ - $40^{\circ}C \le T_{A} \le 85^{\circ}C$	•		13	16 22 24	μΑ μΑ μΑ
	Total Supply Current in Shutdown (Note 7)	$V_{\overline{SHDN}} = 0.3V$	•		0.8	1.5	μА
I _{SHDN}	SHDN Pin Current (Note 7)	$V_{\overline{SHDN}} = 1.8V$ $V_{\overline{SHDN}} = 0V$	•	-300	0 -200	30	nA nA
	Shutdown Output Leakage Current (Note 7)	$V_{\overline{SHDN}} = 0.3V (V^- \le V_{OUT} \le V^+)$	•		20		nA
VL	SHDN Pin Input Low Voltage (Note 7)		•			0.3	V
$\overline{V_{H}}$	SHDN Pin Input High Voltage (Note 7)		•	1.5V			V
t _{ON}	Turn On Time (Note 7)	V _{SHDN} = 0V to 1.8V, R _L = 10k			400		μS
t _{OFF}	Turn Off Time (Note 7)	V _{SHDN} = 1.8V to 0V, R _L = 10k			100		μѕ
GBW	Gain Bandwidth Product (Note 8)	$ \begin{aligned} &\text{Freq} &= 1 \text{kHz} \\ &\text{0°C} \leq \text{T}_{\text{A}} \leq 70 \text{°C} \\ &\text{-40°C} \leq \text{T}_{\text{A}} \leq 85 \text{°C} \end{aligned} $	• •	32 28 24	50		kHz kHz kHz
SR	Slew Rate	$A_V = -1$, $V_{OUT} = 0.25V$ to 1.5V Measure 0.5V to 1.25V, $0^{\circ}C \le T_A \le 70^{\circ}C$ $-40^{\circ}C \le T_A \le 85^{\circ}C$	•	9 7 5	15		V/ms V/ms V/ms
FPBW	Full Power Bandwidth (Note 9)	$V_{OUT} = 1.25V_{P-P}$		2.3	3.8		kHz

ELECTRICAL CHARACTERISTICS The \bullet denotes specifications which apply over the full specified temperature range, otherwise specifications are $T_A = 25^{\circ}C$. $V_S = 5V$, OV, $V_{CM} = V_{OUT} = 1/2$ Supply. For the LT6000 and the LT6001DD, $V_{\overline{SHDN}} = V^+$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	LT6001MS8 $0^{\circ}C \le T_{A} \le 70^{\circ}C$ $-40^{\circ}C \le T_{A} \le 85^{\circ}C$	•		200	600 800 950	μV μV μV
		LT6000DCB, LT6001DD, LT6002GN $0^{\circ}C \le T_A \le 70^{\circ}C$ $-40^{\circ}C \le T_A \le 85^{\circ}C$	•		250	750 1000 1200	μV μV μV
		$ \begin{array}{l} LT6002DHC \\ 0^{\circ}C \leq T_{A} \leq 70^{\circ}C \\ -40^{\circ}C \leq T_{A} \leq 85^{\circ}C \end{array} $	•		300	900 1100 1300	μV μV μV
		V _{CM} = V ⁺ LT6001MS8	•		400	1000 1300	μV μV
		V _{CM} = V ⁺ LT6000DCB, LT6001DD, LT6002GN	•		500	1200 1550	μV μV
		V _{CM} = V ⁺ LT6002DHC	•		500	1300 1700	μV μV
$\Delta V_{OS}/\Delta T$	Input Offset Voltage Drift (Note 5)	$V_{CM} = V_S/2$	•		2	5	μV/°C
I _B	Input Bias Current	$V_{CM} = V_S/2$ $V_{CM} = V^-$ $V_{CM} = V^+$	•	-6 -6	-2 -2 4	12	nA nA nA
I _{OS}	Input Offset Current	$V_{CM} = V_S/2$ $V_{CM} = V^ V_{CM} = V^+$	•		0.2 0.2 0.4	1.2 1.2 2.4	nA nA nA
	Input Noise Voltage	0.1Hz to 10Hz			1.2		μV _{P-P}
e _n	Input Voltage Noise Density	f = 1kHz			75		nV/√Hz
i _n	Input Current Noise Density	f = 1kHz			25		fA/√Hz
R _{IN}	Input Resistance	Common Mode (V _{CM} = 0V to 3.8V) Differential	•	8.5	3.5 25		GΩ MΩ
C _{IN}	Input Capacitance				5		pF
CMRR	Common Mode Rejection Ratio	$V_{CM} = 0V \text{ to } 3.8V, 0^{\circ}C \le T_{A} \le 70^{\circ}C$ $V_{CM} = 0.1V \text{ to } 3.8V, -40^{\circ}C \le T_{A} \le 85^{\circ}C$ $V_{CM} = 0V \text{ to } 5V$	•	90 90 68	105 105 86		dB dB dB
	Input Voltage Range		•	0		5	V
PSRR	Power Supply Rejection Ratio	$V_S = 1.8V \text{ to } 16V$ $V_{CM} = V_0 = 0.5V$	•	86	100		dB
	Minimum Supply		•	1.8			V
A _{VOL}	Large-Signal Gain	$V_{0} = 0.5V \text{ to } 4.5V \\ R_{L} = 100k \text{ to } V_{S}/2 \\ R_{L} = 100k \text{ to } V_{S}/2 \\ R_{L} = 10k \text{ to } V_{S}/2 \\ R_{L} = 10k \text{ to } V_{S}/2 \\ R_{L} = 10k \text{ to } GND \\ R_{L} = 10k \text{ to } GND \\ R_{L} = 10k \text{ to } GND$	•	30 25 16 10 160 80	60 25 1000		V/mV V/mV V/mV V/mV V/mV V/mV
V _{OL}	Output Swing Low (Note 6)	Input Overdrive = 30mV No Load I _{SINK} = 100μΑ I _{SINK} = 500μΑ	•		30 120 180	60 200 300	mV mV mV

ELECTRICAL CHARACTERISTICS The \bullet denotes specifications which apply over the full specified temperature range, otherwise specifications are $T_A = 25^{\circ}C$. $V_S = 5V$, OV, $V_{CM} = V_{OUT} = 1/2$ Supply. For the LT6000 and the LT6001DD, $V_{\overline{SHDN}} = V^+$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{OH}	Output Swing High (Note 6)	Input Overdrive = 30mV No Load ISOURCE = 100µA R _L = 10k to GND	•		30 140 160	60 225 400	mV mV mV
I _{SC}	Short-Circuit Current	Short to GND $0^{\circ}\text{C} \le \text{T}_{\text{A}} \le 70^{\circ}\text{C}$ $-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85^{\circ}\text{C}$	•	5 4 3	10		mA mA mA
		Short to V ⁺ $0^{\circ}C \le T_A \le 70^{\circ}C$ $-40^{\circ}C \le T_A \le 85^{\circ}C$	•	3.5 2.5 1.5	7.5		mA mA mA
I _S	Supply Current per Amplifier	$0^{\circ}C \le T_{A} \le 70^{\circ}C$ - $40^{\circ}C \le T_{A} \le 85^{\circ}C$	•		15	18 24 27	μΑ μΑ μΑ
		V _S = ±8V	•		20	25 34	μA μA
	Total Supply Current in Shutdown (Note 7)	$V_{\overline{SHDN}} = 0.3V$	•		3	5	μА
I _{SHDN}	SHDN Pin Current (Note 7)	V _{SHDN} = 5V V _{SHDN} = 0V	•	-1000	0 -650	30	nA nA
	Shutdown Output Leakage Current (Note 7)	$V_{\overline{SHDN}} = 0.3V \ (V^- \le V_{OUT} \le V^+)$	•		20		nA
V_L	SHDN Pin Input Low Voltage (Note 7)		•			0.3	V
$\overline{V_{H}}$	SHDN Pin Input High Voltage (Note 7)		•	4.7			V
t _{ON}	Turn On Time (Note 7)	$V_{\overline{SHDN}} = 0V \text{ to } 5V, R_L = 10k$			400		μS
t _{OFF}	Turn Off Time (Note 7)	$V_{\overline{SHDN}} = 5V \text{ to } 0V, R_L = 10k$			100		μS
GBW	Gain Bandwidth Product	Freq = 1kHz $0^{\circ}C \le T_A \le 70^{\circ}C$ $-40^{\circ}C \le T_A \le 85^{\circ}C$	•	40 35 30	60		kHz kHz kHz
SR	Slew Rate	$\begin{array}{l} A_V = -1 , V_{OUT} = 0.5V \text{ to } 4.5V \\ \text{Measure 1V to 4V, 0°C} \leq T_A \leq 70°C \\ -40°C \leq T_A \leq 85°C \end{array}$	•	11 8 6	18		V/ms V/ms V/ms
FPBW	Full Power Bandwidth (Note 9)	$V_{OUT} = 4V_{P-P}$		0.87	1.4		kHz

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

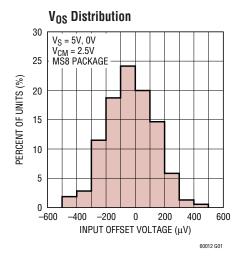
Note 2: A heat sink may be required to keep the junction temperature below the absolute maximum. This depends on the power supply voltage and how many amplifiers are shorted. The θ_{JA} specified for the DD and DHC packages is with minimal PCB heat spreading metal. Using expanded metal area on all layers of a board reduces this value.

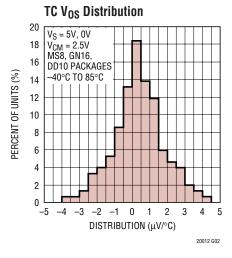
Note 3: The LT6000C/LT6000I/LT6001C/LT6001I and LT6002C/LT6002I are guaranteed functional over the temperature range of -40°C to 85°C.

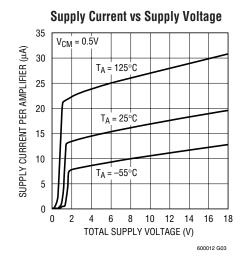
Note 4: The LT6000C/LT6001C/LT6002C is guaranteed to meet specified performance from 0°C to 70°C. The LT6000C/LT6001C/LT6002C are designed, characterized and expected to meet specified performance from

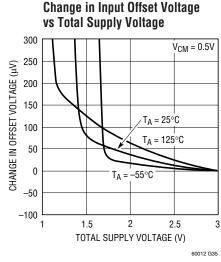
 -40°C to 85°C but are not tested or QA sampled at these temperatures. The LT6000I/LT6001I/ LT6002I is guaranteed to meet specified performance from -40°C to 85°C .

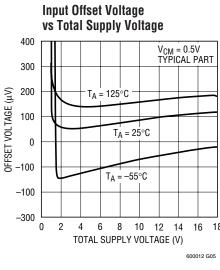
Note 5: This parameter is not 100% tested.

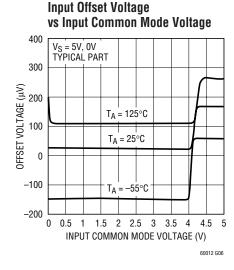

Note 6: Output voltage swings are measured between the output and power supply rails.

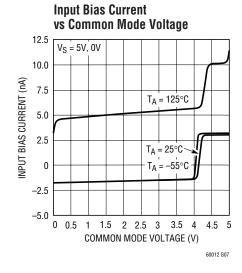

Note 7: Specifications apply to the LT6000 or the LT6001DD with shutdown.

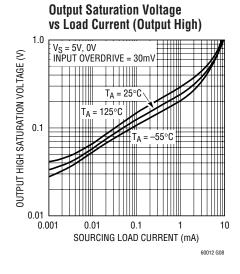

Note 8: Guaranteed by correlation to slew rate at $V_S = 1.8V$ and GBW at $V_S = 5V$.

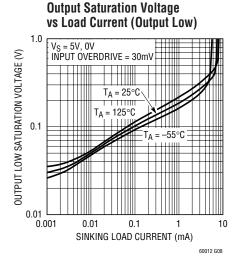

Note 9: Full-power bandwidth is calculated from the slew rate: FPBW = $SR/\pi V_{P-P}$.

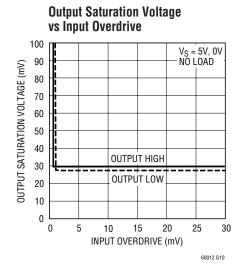

LINEAR

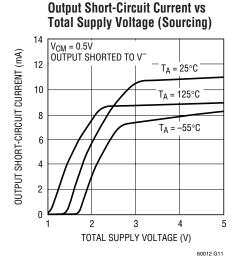


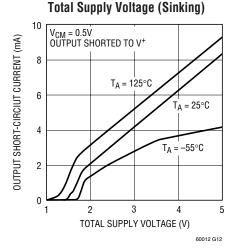


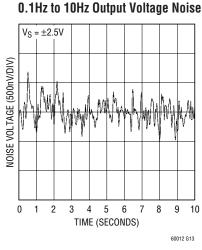


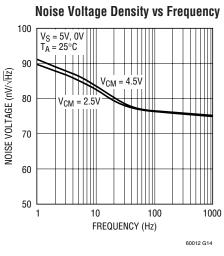


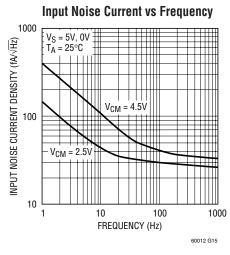


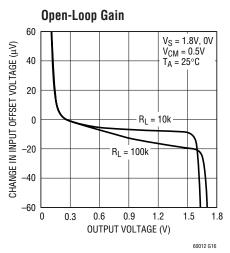


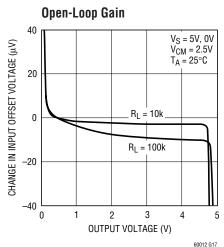


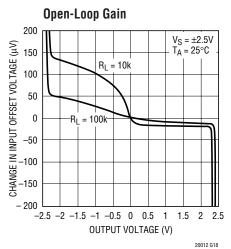


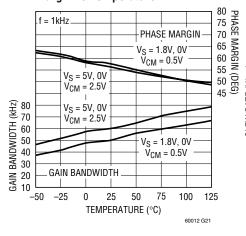


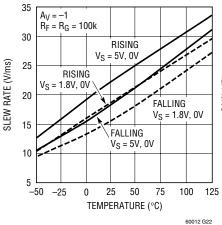


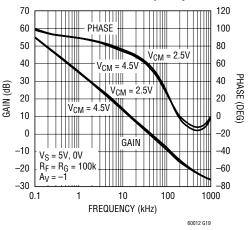


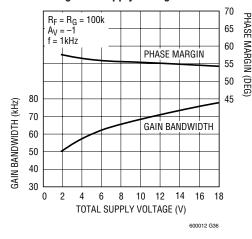

Output Short-Circuit Current vs

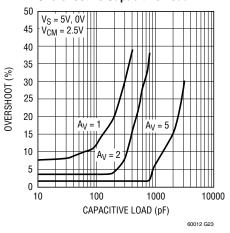


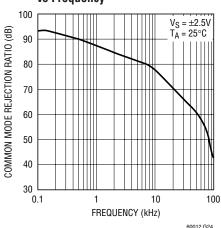


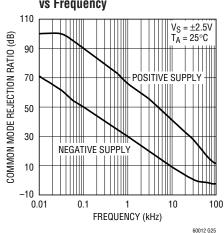


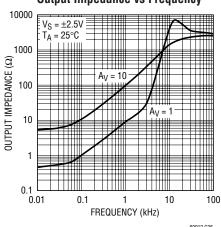

Gain Bandwidth and Phase Margin vs Temperature

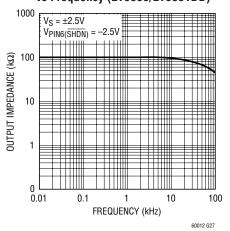

Slew Rate vs Temperature


Gain and Phase vs Frequency

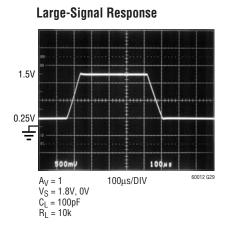

Gain Bandwidth and Phase Margin vs Supply Voltage

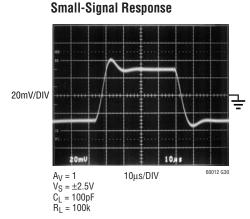

Capacitive Load Handling Overshoot vs Capacitive Load

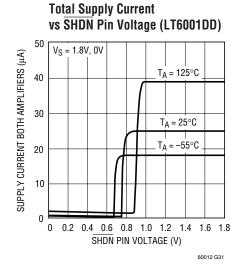

Common Mode Rejection Ratio vs Frequency

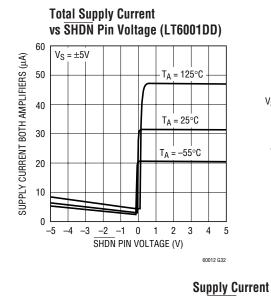

Power Supply Rejection Ratio vs Frequency

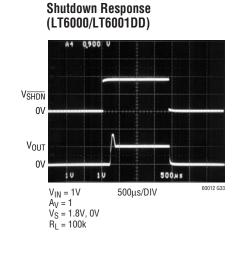
Output Impedance vs Frequency

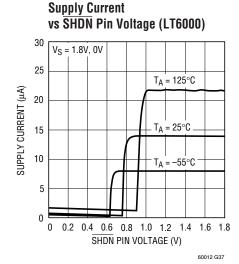

Disabled Output Impedance vs Frequency (LT6000/LT6001DD)

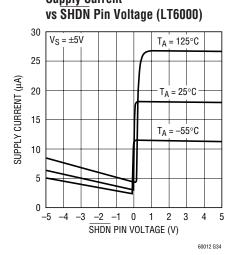





Large-Signal Response 4.5V $A_{V} = 1 \\ V_{S} = 5V, \text{ OV} \\ C_{L} = 100 \text{pF}$


 $R_L = 10k$





INEAD

SIMPLIFIED SCHEMATIC

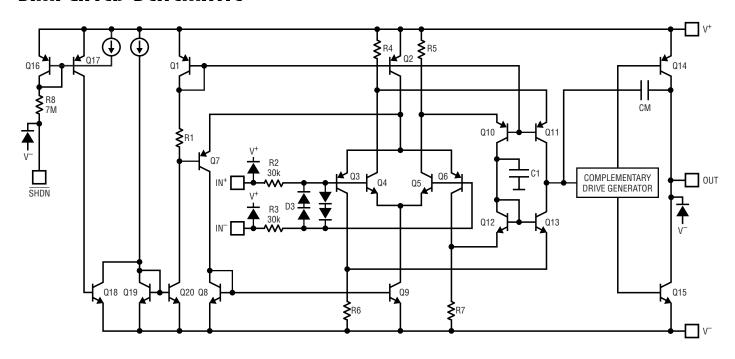


Figure 1

APPLICATIONS INFORMATION

Supply Voltage

The positive supply of the LT6000/LT6001/LT6002 should be bypassed with a small capacitor (about $0.01\mu F$) within an inch of the pin. When driving heavy loads, an additional $4.7\mu F$ electrolytic capacitor should be used. When using split supplies, the same is true for the negative supply pin.

Rail-to-Rail Characteristics

The LT6000/LT6001/LT6002 are fully functional for an input signal range from the negative supply to the positive supply. Figure 1 shows a simplified schematic of the amplifier. The input stage consists of two differential amplifiers, a PNP stage Q3/Q6 and an NPN stage Q4/Q5 that are active over different ranges of the input common mode voltage. The PNP stage is active for common mode voltages, V_{CM} , between the negative supply to approximately 1V below the positive supply. As V_{CM} moves closer towards the positive supply, the transistor Q7 will steer Q2's tail current to the current mirror Q8/Q9, activating the NPN differential pair. The PNP pair becomes inactive for

the rest of the input common mode range up to the positive supply.

The second stage is a folded cascode and current mirror that converts the input stage differential signals into a single ended output. Capacitor C1 reduces the unity cross frequency and improves the frequency stability without degrading the gain bandwidth of the amplifier. The complementary drive generator supplies current to the output transistors that swing from rail to rail.

Input

The input bias current depends on which stage is active. The input bias current polarity depends on the input common mode voltage. When the PNP stage is active, the input bias currents flow out of the input pins. They flow in the opposite direction when the NPN stage is active. The offset error due to the input bias currents can be minimized by equalizing the noninverting and inverting source impedance.

APPLICATIONS INFORMATION

The input offset voltage changes depending on which input stage is active; input offset voltage is trimmed on both input stages, and is guaranteed to be $600\mu V$ max in the PNP stage. By trimming the input offset voltage of both input stages, the input offset voltage over the entire common mode range (CMRR) is typically $400\mu V$, maintaining the precision characteristics of the amplifier.

The input stage of the LT6000/LT6001/LT6002 incorporates phase reversal protection to prevent wrong polarity outputs from occurring when the inputs are driven up to 2V below the negative rail. 30k protective resistors are included in the input leads so that current does not become excessive when the inputs are forced below V⁻ or when a large differential signal is applied. Input current should be limited to 10mA when the inputs are driven above the positive rail.

Output

The output of the LT6000/LT6001/LT6002 can swing to within 30mV of the positive rail with no load and within 30mV of the negative rail with no load. When monitoring input voltages within 30mV of the positive rail or within 30mV of the negative rail, gain should be taken to keep the output from clipping. The LT6000/LT6001/LT6002 can typically source 10mA on a single 5V supply, sourcing current is reduced to 4mA on a single 1.8V supply as noted in the electrical characteristics.

The normally reverse-biased substrate diode from the output to V^- will cause unlimited currents to flow when the output is forced below V^- . If the current is transient and limited to 100mA, no damage will occur.

Start-Up and Output Saturation Characteristics

Micropower op amps are often not micropower during start-up characteristics or during output saturation. This can wreak havoc on limited current supplies, in the worst case there may not be enough supply current available to take the system up to nominal voltages. Also, when the output saturates, the part may draw excessive current and pull down the supplies, compromising rail-to-rail performance. Figure 1 shows the start-up characteristics of the LT6000/LT6001/LT6002 for three limiting cases. The circuits are shown in Figure 2. One circuit creates a positive offset forcing the output to come up saturated high. Another circuit creates a negative offset forcing the output to come up saturated low, while the last circuit brings the output up at 1/2 supply. In all cases, the supply current is well controlled and is not excessive when the output is on either rail.

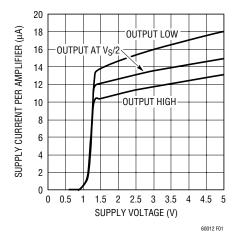


Figure 1. Start-Up Characteristics

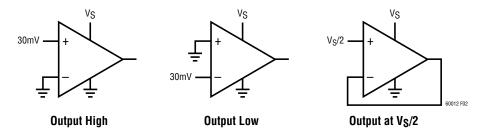


Figure 2. Circuits for Start-Up Characteristics

APPLICATIONS INFORMATION

The LT6000/LT6001/LT6002 outputs can swing to within a respectable 30mV of each rail and draw virtually no excessive supply current. Figure 3 compares the dual LT6001 to a competitive part. Both op amps are in unity gain and their outputs are driven into each rail. The supply current is shown when the op amps are in linear operation and when they are driven into each rail. As can be seen from Figure 3, the supply current of the competitive part increases 3-fold or 5-fold depending on which rail the output goes to whereas the LT6001 draws virtually no excessive current.

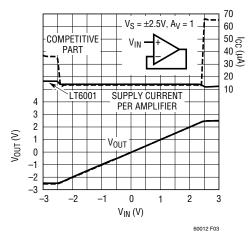
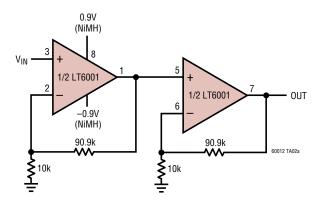
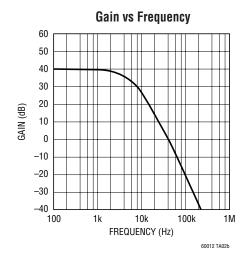


Figure 3. Vout and Icc vs Input Voltage

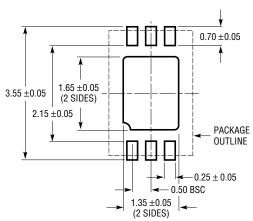
Gain

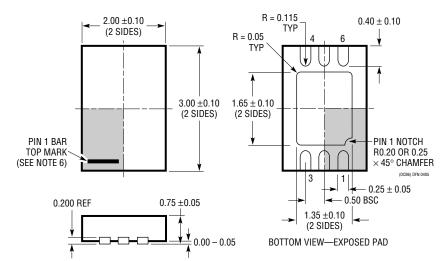
The open-loop gain is almost independent of load when the output is sourcing current. This optimizes performance in single supply applications where the load is returned to ground. The typical performance curve of Open-Loop Gain for various loads shows the details.


Shutdown


The single LT6000 and the 10-lead dual LT6001 include a shutdown feature that disables the part reducing quiescent current and makes the output high impedance. The devices can be shut down by bringing the SHDN pin within 0.3V of V⁻. The amplifiers are guaranteed to shut down if the SHDN pin is brought within 0.3V of V⁻. The exact switchover point will be a function of the supply voltage. See the Typical Performance Characteristics curves Supply Current vs Shutdown Pin Voltage. When shut down the total supply current is about 0.8 μ A and the output leakage current is 20nA (V⁻ \leq V_{OUT} \leq V⁺). For normal operation the SHDN pin should be tied to V⁺. It can be left floating, however, parasitic leakage currents over 1 μ A at the SHDN pin may inadvertently place the part into shutdown.

TYPICAL APPLICATION

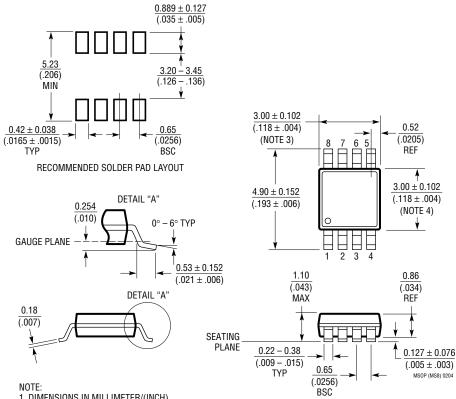

Gain of 100 Amplifier (400kHz GBW on 30 μ A Supply)



DCB Package 6-Lead Plastic DFN (2mm × 3mm)

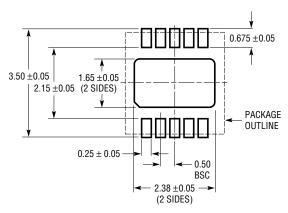
(Reference LTC DWG # 05-08-1715)

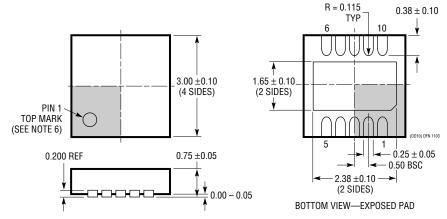
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS


NOTE:

- 1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE MO-229 VARIATION OF (TBD)
 2. DRAWING NOT TO SCALE
- 3. ALL DIMENSIONS ARE IN MILLIMETERS
- 4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE
- 5. EXPOSED PAD SHALL BE SOLDER PLATED
 6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE

MS8 Package 8-Lead Plastic MSOP

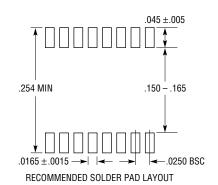

(Reference LTC DWG # 05-08-1660)

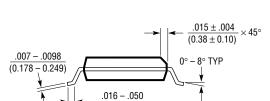

- 1. DIMENSIONS IN MILLIMETER/(INCH)
- 2. DRAWING NOT TO SCALE
- 3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE
- 4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.
- INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE 5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX

DD Package 10-Lead (3mm × 3mm) Plastic DFN

(Reference LTC DWG # 05-08-1699)

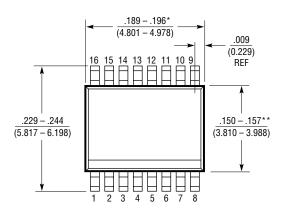
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

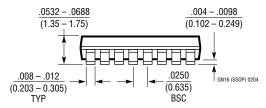

NOTE:


- DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).
 CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT.
- 2. DRAWING NOT TO SCALE
- 2. DRAWING NOT TO SCALE
 3. ALL DIMENSIONS ARE IN MILLIMETERS
 4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE
 MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE
- 5. EXPOSED PAD SHALL BE SOLDER PLATED
- 6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE

GN Package 16-Lead Narrow Plastic SSOP

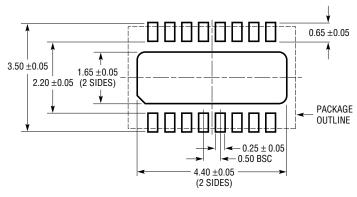
(Reference LTC DWG # 05-08-1641)

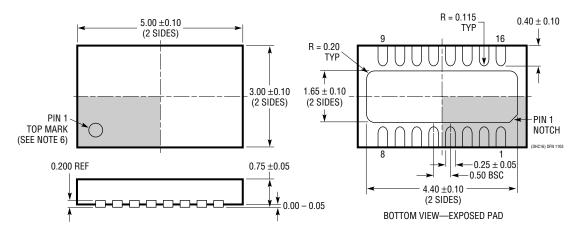




(0.406 - 1.270)

NOTE:


- 1. CONTROLLING DIMENSION: INCHES
- 2. DIMENSIONS ARE IN $\frac{\text{INCHES}}{\text{(MILLIMETERS)}}$
- 3. DRAWING NOT TO SCALE
- *DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
- **DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE



DHC Package 16-Lead (5mm×5mm) Plastic DFN

(Reference LTC DWG # 05-08-1706)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

- NOTE
- 1. DRAWING PROPOSED TO BE MADE VARIATION OF VERSION (WJED-1) IN JEDEC PACKAGE OUTLINE MO-229
- 2. DRAWING NOT TO SCALE
- 3. ALL DIMENSIONS ARE IN MILLIMETERS
- 4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE
- 5. EXPOSED PAD SHALL BE SOLDER PLATED
- 6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE

