

3.3V Low Power EIA/TIA-562 3-Driver/ 5-Receiver Transceiver

FEATURES

Low Supply Current: 300µA
 Receivers 4 and 5 Kept Alive in Shutdown: 35µA

■ ESD Protection: ±10kV

Operates from a Single 3.3V Supply

Uses Small Capacitors: 0.1μF

Operates to 120kBaud

 Three-State Outputs are High Impedance When Off

 Output Overvoltage Does Not Force Current Back into Supplies

 EIA/TIA-562 I/O Lines Can Be Forced to ±25V Without Damage

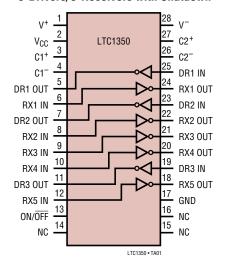
Flowthrough Architecture

APPLICATIONS

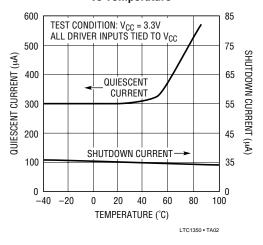
- Notebook Computers
- Palmtop Computers

DESCRIPTION

The LTC®1350 is a 3-driver/5-receiver EIA/TIA-562 transceiver with very low supply current. In the no load condition, the supply current is only $300\mu A$. The charge pump only requires four $0.1\mu F$ capacitors.

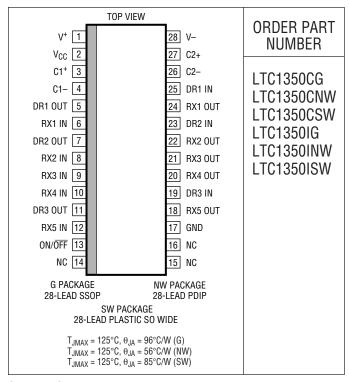

In Shutdown mode, two receivers are kept alive and the supply current is only $35\mu A$. All RS232 outputs assume a high impedance state in Shutdown or with the power off.

The LTC1350 is fully compliant with all data rate and overvoltage EIA/TIA-562 specifications. The transceiver can operate up to 120kbaud with a 1000pF and $3k\Omega$ load. Both driver outputs and receiver inputs can be forced to $\pm 25V$ without damage and can survive multiple $\pm 10kV$ ESD strikes.


7, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

3-Drivers/5-Receivers with Shutdown


Quiescent and Shutdown Supply Current vs Temperature

ABSOLUTE MAXIMUM RATINGS

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

DC ELECTRICAL CHARACTERISTICS The \bullet denotes specifications which apply over the full operating temperature range. $V_{CC}=3.3V$, $C1=C2=C3=C4=0.1\mu F$, unless noted.

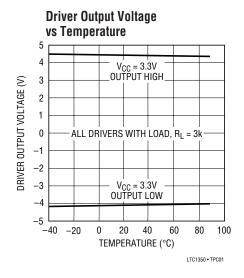
PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Any Driver							
Output Voltage Swing	3k to GND	Positive Negative	•	3.7 -3.7	4.5 - 4.5		V
Logic Input Voltage Level	Input Low Level (V _{OUT} = High) Input High Level (V _{OUT} = Low)		•	2.0	1.4 1.4	0.8	V
Logic Input Current	$V_{IN} = V_{CC}$ $V_{IN} = 0V$		•			5 -5	μΑ μΑ
Output Short-Circuit Current	V _{OUT} = 0V			±9	±10		mA
Output Leakage Current	Shutdown (Note 3), $V_{OUT} = \pm 20V$				10	500	μА
Any Receiver							
Input Voltage Thresholds	Input Low Threshold Input High Threshold		•	0.8	1.3 1.7	2.4	V
Hysteresis			•	0.1	0.4	1	V
Input Resistance	$V_{IN} = \pm 10V$			3	5	7	kΩ
Output Voltage	Output Low, $I_{OUT} = -1.6$ mA ($V_{CC} = 3$) Output High, $I_{OUT} = 160$ µA ($V_{CC} = 3$).		•	3.0	0.2 3.2	0.4	V
Output Short-Circuit Current	Sinking Current, V _{OUT} = V _{CC}			-3	-20		mA
Output Leakage Current	Shutdown (Note 3), $0V \le V_{OUT} \le V_{CO}$	}	•		1	10	μА

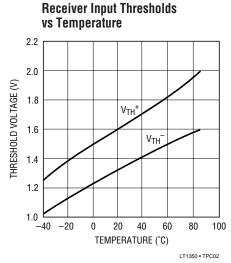
LINEAR

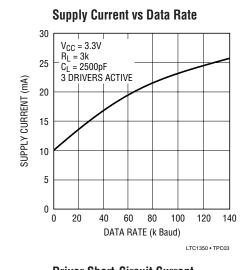
DC ELECTRICAL CHARACTERISTICS The \bullet denotes specifications which apply over the full operating temperature range. $V_{CC} = 3.3V$, $C1 = C2 = C3 = C4 = 0.1 \mu F$, unless noted.

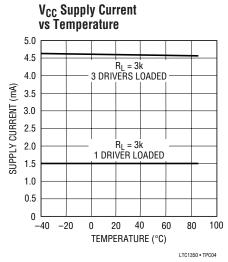
PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Power Supply Generator						
V ⁺ Output Voltage	I _{OUT} = 0mA			5.7		V
	$I_{OUT} = 5mA$			5.5		V
V ⁻ Output Voltage	$I_{OUT} = 0mA$			-5.3		V
	$I_{OUT} = -5mA$			-5.0		V
Supply Rise Time	Shutdown to Turn-On			0.2		ms
Power Supply		•				
V _{CC} Supply Current	No Load (All Drivers $V_{IN} = V_{CC}$)(Note 2) $0^{\circ}C \le T_A \le 70^{\circ}C$	•		0.3	0.6	mA
	No Load (All Drivers $V_{IN} = 0$)(Note 2) $0^{\circ}C \le T_A \le 70^{\circ}C$	•		0.5	1.0	mA
	No Load (All Drivers $V_{IN} = V_{CC}$)(Note 2) $0^{\circ}C \le T_A \le 85^{\circ}C$	•		0.3	1.0	mA
	No Load (All Drivers $V_{IN} = V_{CC}$)(Note 2) -40° C $\leq T_A \leq 0^{\circ}$ C	•		0.3	1.5	mA
	No Load (All Drivers $V_{IN} = 0$)(Note 2) -40° C $\leq T_A \leq 85^{\circ}$ C	•		0.5	1.5	mA
	Shutdown (Note 3)	•		35	50	μΑ
ON/OFF Threshold Low		•		1.4	0.8	V
ON/OFF Threshold High		•	2.0	1.4		V

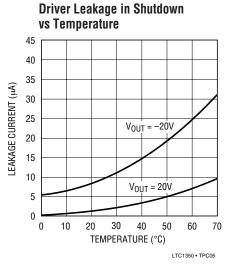
AC CHARACTERISTICS The \bullet denotes specifications which apply over the full operating temperature range. $V_{CC}=5V,\ C1=C2=C3=C4=0.1\mu F,\ unless\ noted.$

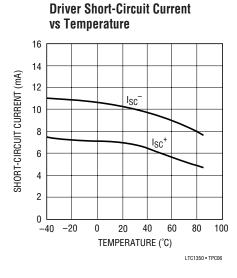

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Slew Rate	$R_L = 3k, C_L = 51pF$			8	30	V/µs
	$R_L = 3k, C_L = 1000pF$		3	5		V/µs
Driver Propagation Delay	t _{HLD} (Figure 1)	•		2	3.5	μS
(TTL to EIA/TIA-562)	t _{LHD} (Figure 1)	•		2	3.5	μS
Receiver Propagation Delay	t _{HLR} (Figure 2)	•		0.3	0.8	μS
(EIA/TIA-562 to TTL)	t _{LHR} (Figure 2)	•		0.3	0.8	μS

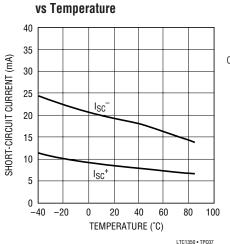

Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.

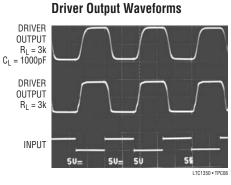

Note 2: Supply current is measured with driver and receiver outputs unloaded.

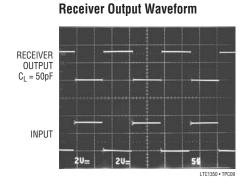

Note 3: Supply current measurement in Shutdown mode is performed with $V_{ON/\overline{OFF}} = 0V$.


TYPICAL PERFORMANCE CHARACTERISTICS









Receiver Short-Circuit Current

1350fa

PIN FUNCTIONS

 V_{CC} : 3.3V Input Supply Pin. Supply current is typically $35\mu A$ in the Shutdown mode. This pin should be decoupled with a $0.1\mu F$ ceramic capacitor.

GND: Ground Pin.

ON/OFF: TTL/CMOS Compatible Shutdown Pin. A logic low puts the device in the Shutdown mode with receivers 4 and 5 kept alive and the supply current equal to 35μ A. All driver and other receiver outputs are in high impedance state. This pin cannot float.

V+: Positive Supply Output. $V^+ \cong 2V_{CC} - 1V$. This pin requires an external capacitor ($C = 0.1 \mu F$) for charge storage. The capacitor may be tied to ground or V_{CC} . With multiple devices, the V^+ and V^- pins may be paralleled into common capacitors. For a large number of devices, increasing the size of the shared common storage capacitors is recommended to reduce ripple.

V⁻: Negative Supply Output. $V^- = -(2V_{CC} - 1.3V)$. This pin requires an external capacitor ($C = 0.1 \mu F$) for charge storage.

C1+, C1-, C2+, C2-: Commutating Capacitor Inputs. These pins require two external capacitors ($C = 0.1 \mu F$): one from C1+ to C1- and another from C2+ to C2-. To maintain charge pump efficiency, the capacitor's effective series resistance should be less than 20Ω .

DR IN: EIA/TIA-562 Driver Input Pins. Inputs are TTL/CMOS compatible. Inputs should not be allowed to float. Tie unused inputs to V_{CC} .

DR OUT: Driver Outputs at EIA/TIA-562 Voltage Levels. Outputs are in a high impedance state when in the Shutdown mode or V_{CC} = OV. The driver outputs are protected against ESD to ± 10 kV for human body model discharges.

RX IN: Receiver Inputs. These pins can be forced to ± 25 V without damage. The receiver inputs are protected against ESD to ± 10 kV for human body model discharges. Each receiver provides 0.4V of hysteresis for noise immunity.

RX OUT: Receiver Outputs with TTL/CMOS Voltage Levels. Receiver 1, 2 and 3 outputs are in a high impedance state when in Shutdown mode to allow data line sharing. Receivers 4 and 5 are kept alive in Shutdown.

SWITCHING TIME WAVEFORMS

Figure 1. Driver Propagation Delay Timing

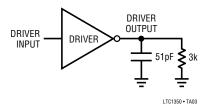
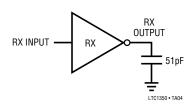
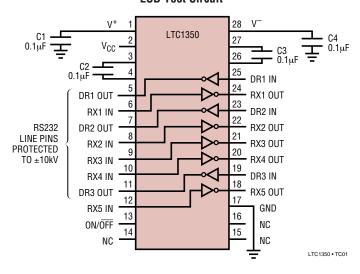


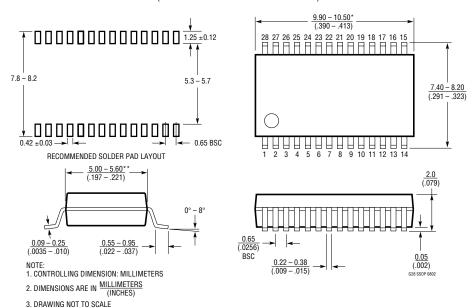
Figure 2. Receiver Propagation Delay Timing



TEST CIRCUITS

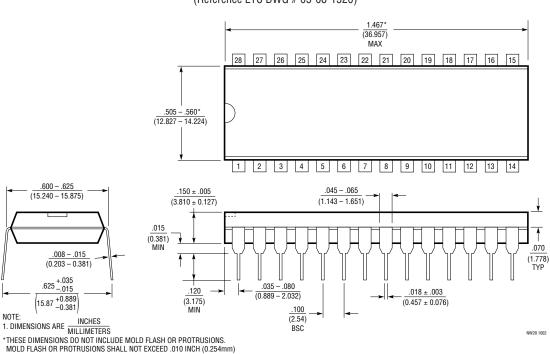

Driver Timing Test Load

Receiver Timing Test Load


ESD Test Circuit

PACKAGE DESCRIPTION

G Package 28-Lead Plastic SSOP (5.3mm)


(Reference LTC DWG # 05-08-1640)

NW Package 28-Lead PDIP (Wide .600 Inch)

*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .152mm (.006') PER SIDE **DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED .254mm (.010') PER SIDE

(Reference LTC DWG # 05-08-1520)

