

5V Low Power RS232 Transceiver with 2 Receivers Active in Shutdown

FEATURES

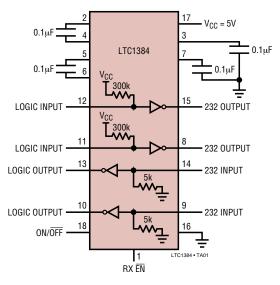
- Operates from a Single 5V Supply Low Supply Current: I_{CC} = 220µA
- I_{CC} = 35μA in Shutdown Mode with Both Receivers Kept Alive
- ESD Protection Over ±10kV
- Uses Small Capacitors: 0.1µF
- Operates to 120kBaud
- Output Overvoltage Does Not Force Current Back into Supplies
- RS232 I/O Lines Can Be Forced to ±25V Without Damage
- Pin Compatible with LT1180A

APPLICATIONS

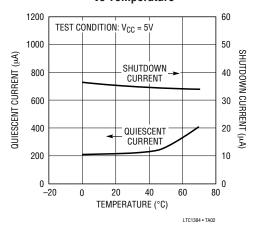
- Notebook Computers
- Palmtop Computers

DESCRIPTION

The LTC $^{\circ}$ 1384 is an ultra-low power 2-driver/2-receiver RS232 transceiver that operates from a single 5V supply. The charge pump requires only four space-saving 0.1 μ F capacitors.


The transceiver operates in one of two modes, Normal and Shutdown. In the Normal mode, I_{CC} is only $220\mu A$ with the driver outputs unloaded. In the Shutdown mode, the charge pump is turned off, the driver outputs are forced into three-state, both receivers are kept active and I_{CC} drops to $35\mu A$. The receiver outputs may be forced into three-state at any time using the receiver enable (RX \overline{EN}) pin.

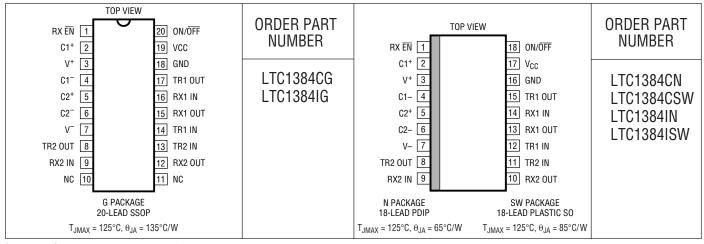
The LTC1384 is fully compliant with all data rate and overvoltage RS232 specifications. The transceiver can operate up to 120kbaud with a 2500pF, $3k\Omega$ load. Both driver outputs and receiver inputs can be forced to $\pm 25V$ without damage and can survive multiple $\pm 10kV$ ESD strikes.


T, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

2-Drivers/2-Receivers with Shutdown and Receiver Enable

Quiescent and Shutdown Supply Current vs Temperature


1384fa

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC}) 6	V
Input Voltage	
Driver $-0.3V$ to $V_{CC} + 0.3V$	V
Receiver – 25V to 25V	V
Digital Input $-0.3V$ to $V_{CC} + 0.3V$	V
Output Voltage	
Driver – 25V to 25V	V
Receiver -0.3 V to V_{CC} + 0.3 V	V

Short-Circuit Duration	
V ⁺	30 sec
V	30 sec
Driver Output	Indefinite
Receiver Output	Indefinite
Operating Temperature Range	
LTC1384C	0°C to 70°C
LTC1384I	40°C to 85°C
Storage Temperature Range	65°C to 150°C
Lead Temperature (Soldering, 10 sec).	300°C

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

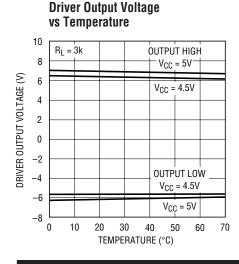
DC ELECTRICAL CHARACTERISTICS The • denotes specifications which apply over the full operating temperature range. $V_{CC} = 5V$, $C1 = C2 = C3 = C4 = 0.1 \mu F$, $V_{ON/\overline{OFF}} = V_{CC}$, RX $\overline{EN} = 0V$, unless otherwise noted.

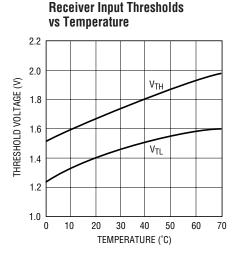
PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Any Driver							
Output Voltage Swing	3k to GND	Positive Negative	•	5.0 -5.0	7.0 -6.5		V V
Logic Input Voltage Level	Input Low Level (V _{OUT} = High) Input High Level (V _{OUT} = Low)		•	2.0	1.4 1.4	0.8	V V
Logic Input Current	$V_{IN} = V_{CC}$ $V_{IN} = 0V$		•		-20	5 -40	μA μA
Output Short-Circuit Current	V _{OUT} = 0V			±9	±12		mA
Output Leakage Current	Shutdown or $V_{CC} = 0V$ (Note 3), V_{OL}	T = ±10V	•		±10	±500	μА
Any Receiver							
Input Voltage Thresholds	Input Low Threshold Input High Threshold		•	0.8	1.3 1.7	2.4	V
Hysteresis			•	0.1	0.4	1	V
Input Resistance	$-10V \le V_{IN} \le 10V$			3	5	7	kΩ
Output Voltage	Output Low, $I_{OUT} = -1.6$ mA ($V_{CC} = 5$) Output High, $I_{OUT} = 160$ µA ($V_{CC} = 5$)		•	3.0	0.2 3.2	0.4	V V

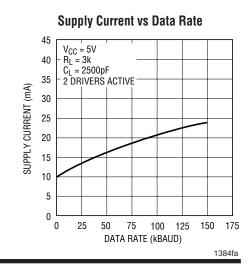
DC ELECTRICAL CHARACTERISTICS The • denotes specifications which apply over the full operating temperature range. $V_{CC} = 5V$, $C1 = C2 = C3 = C4 = 0.1 \mu F$, $V_{ON/\overline{OFF}} = V_{CC}$, RX $\overline{EN} = 0V$, unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Output Short-Circuit Current	Sinking Current, V _{OUT} = V _{CC}		-15	-40		mA
	Sourcing Current, V _{OUT} = 0V		10	20		mA
Output Leakage Current	$\overline{EN} = V_{CC}, \ OV \le V_{OUT} \le V_{CC}$	•		1	10	μА
Power Supply Generator						
V ⁺ Output Voltage	I _{OUT} = 0mA			8.0		V
	$I_{OUT} = 8mA$			7.5		V
V ⁻ Output Voltage	I _{OUT} = 0mA			-8.0		V
	$I_{OUT} = -8mA$			-7.0		V
Supply Rise Time	Shutdown to Turn-On			0.2		ms
Power Supply		·				
V _{CC} Supply Current	No Load (Note 2), 0°C to 70°C	•		0.22	0.5	mA
	No Load (Note 2), -40°C to 85°C	•		0.35	1.0	mA
Supply Leakage Current (V _{CC})	Shutdown (Note 3)	•		35	50	μА
Digital Input Threshold Low		•		1.4	0.8	V
Digital Input Threshold High		•	2.0	1.4		V

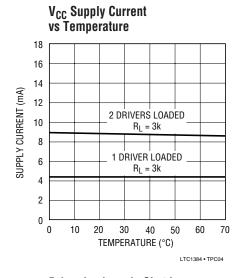
AC CHARACTERISTICS The • denotes specifications which apply over the full operating temperature range. $V_{CC} = 5V$, $C1 = C2 = C3 = C4 = 0.1 \mu F$, unless otherwise noted.

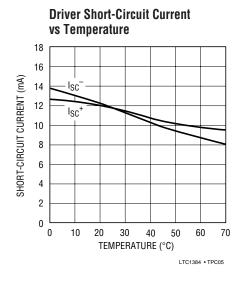

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Slew Rate	$R_L = 3k, C_L = 51pF$			8	30	V/µs
	$R_L = 3k, C_L = 2500pF$		3	5		V/µs
Driver Propagation Delay	t _{HLD} (Figure 1)	•		2	3.5	μS
(TTL to RS232)	t _{LHD} (Figure 1)	•		2	3.5	μS
Receiver Propagation Delay	t _{HLR} (Figure 2)	•		0.3	0.8	μS
(RS232 to TTL)	t _{LHR} (Figure 2)	•		0.3	0.8	μS

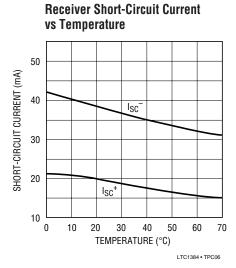

Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.

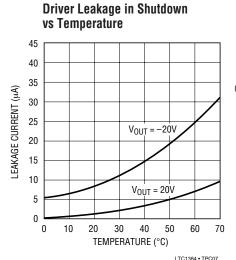

Note 2: Supply current is measured with driver and receiver outputs unloaded.

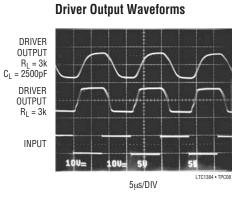
Note 3: Measurements made in the Shutdown mode are performed with $V_{ON/\overline{OFF}} = 0V$.

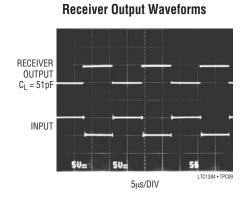

TYPICAL PERFORMANCE CHARACTERISTICS








TYPICAL PERFORMANCE CHARACTERISTICS



PIN FUNCTIONS

 V_{CC} : 5V Input Supply Pin. This pin should be decoupled with a $0.1\mu F$ ceramic capacitor.

GND: Ground Pin.

ON/OFF: TTL/CMOS Compatible Shutdown Pin. A logic low puts the device in the Shutdown mode independent of the RX $\overline{\text{EN}}$ pin. The supply current of the device drops to 35 μA (two receivers alive) and both driver outputs are forced into three-state.

RX EN: TTL/CMOS Compatible Receiver Enable Pin. A logic high forces the receiver outputs into three-state. A logic low enables the receiver outputs.

V*: Positive Supply Output (RS232 Drivers). V* \cong 2V_{CC} – 2V. This pin requires an external capacitor C = 0.1μF for charge storage. The capacitor may be tied to ground or V_{CC}. With multiple devices, the V* and V* pins may share a common capacitor. For large numbers of devices, increasing the size of the shared common storage capacitors is recommended to reduce ripple.

V⁻: Negative Supply Output (RS232 Drivers). V $^ \cong$ - (2V_{CC} - 2V). This pin requires an external capacitor C = $0.1 \mu F$ for charge storage.

C1+, C1-, C2+, C2-: Commutating Capacitor Inputs. These pins require two external capacitors $C = 0.1 \mu F$: one from C1+ to C1- and another from C2+ to C2-. To maintain charge pump efficiency, the capacitor's effective series resistance should be less than 2Ω .

TR IN: RS232 Driver Input Pins. Inputs are TTL/CMOS compatible. The inputs of unused drivers can be left unconnected since 300k input pull-up resistors to V_{CC} are included on chip. To minimize power consumption, the internal driver pull-up resistors are disconnected from V_{CC} in the Shutdown mode.

TR OUT: Driver Outputs at RS232 Voltage Levels. Outputs are in a high impedance state when in the Shutdown or V_{CC} = 0V. The driver outputs are protected against ESD to ± 10 kV for human body model discharges.

RX IN: Receiver Inputs. These pins can be forced to ± 25 V without damage. The receiver inputs are protected against ESD to ± 10 kV for human body model discharges. Each receiver provides 0.4V of hysteresis for noise immunity.

RX OUT: Receiver Outputs with TTL/CMOS Voltage Levels. A logic high at RX $\overline{\text{EN}}$ puts the outputs into three-state.

SWITCHING TIME WAVEFORMS

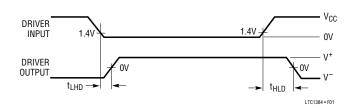


Figure 1. Driver Propagation Delay Timing

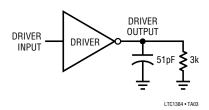
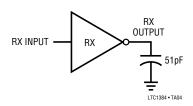
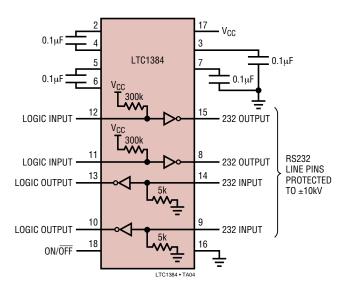



Figure 2. Receiver Propagation Delay Timing

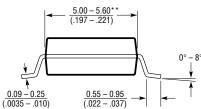


TEST CIRCUITS


Driver Timing Test Load

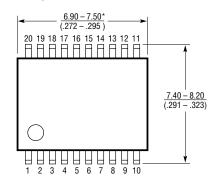
Receiver Timing Test Load

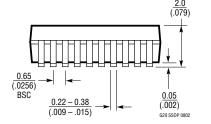

ESD Test Circuit



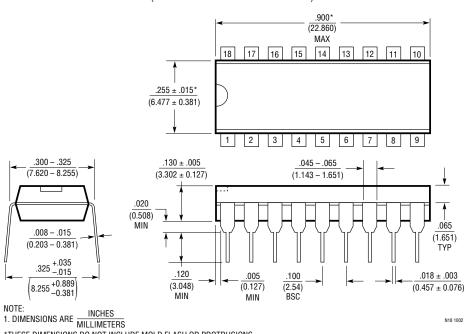
PACKAGE DESCRIPTION

G Package 20-Lead Plastic SSOP (5.3mm)


(Reference LTC DWG # 05-08-1640)



NOTE


- 1. CONTROLLING DIMENSION: MILLIMETERS
- 2. DIMENSIONS ARE IN $\frac{\text{MILLIMETERS}}{\text{(INCHES)}}$
- 3. DRAWING NOT TO SCALE
- *DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .152mm (.006") PER SIDE
- **DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED .254mm (.010") PER SIDE

N Package 18-Lead PDIP (Narrow .300 Inch)

(Reference LTC DWG # 05-08-1510)

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)

