

LTC4311

Low Voltage ²C/SMBus **Accelerator**

FEATURES

- **Improves I2C Bus Rise Time Transition**
- **Ensures Data Integrity with Multiple Devices on the I 2C Bus.**
- **Wide Supply Voltage Range: 1.6V to 5.5V**
- Improves Low State Noise Margin
- Up to 400kHz Operation
- Auto Detect Low Power Standby Mode
- Low (<5µA) Supply Current Shutdown
- Does Not Load Bus When Disabled or Powered Down
- Strong Slew Limited Pull-up Current
- ±8kV Human Body Model ESD Ruggedness
- 2mm \times 2mm DFN and SC70 Packages

APPLICATIONS

■ Notebook and Palmtop Computers

TYPICAL APPLICATION

- Portable Instruments
- Battery Chargers
- Industrial Controls
- TV/Video Products
- ACPI SMBus Interface

DESCRIPTION

The LTC[®]4311 is a dual 12 C active pull-up designed to enhance data transmission speed and reliability for bus loading conditions well beyond the 400pF I²C specification limit. The LTC4311 operates at supply voltages from 1.6V to 5.5V and is also compatible with SMBus.

The LTC4311 allows multiple device connections or a longer, more capacitive interconnect, without compromising slew rates or bus performance, by using two slew limited pull-up currents.

During positive bus transitions, the LTC4311 provides slew limited pull-up currents to quickly slew the I²C or SMBus lines to the bus pull-up voltage. During negative transitions or steady DC levels, the currents are disabled to improve negative slew rate, and improve low state noise margins. An auto detect standby mode reduces supply current if both SCL and SDA are high. When disabled, the LTC4311 goes into low (<5μA) current shutdown.

The LTC4311 is available in the 2mm \times 2mm \times 0.75mm DFN, and SC70 packages.

 $\mathcal{I}\mathcal{T}$, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. Protected by U.S. Patents including 6356140 and 6650174.

Comparison of I2C Waveforms for the LTC4311 vs Resistor Pull-Up

ABSOLUTE MAXIMUM RATINGS (Notes 1, 2)

Storage Temperature Range (DFN)–65°C to 125°C Storage Temperature Range (SC70).......–65°C to 125°C Lead Temperature (Soldering 10, sec) SC70 .. 300°C

PIN CONFIGURATION

ORDER INFORMATION

Lead Free Finish

TRM = 500 pieces. *Temperature grades are identified by a label on the shipping container.

Consult LTC Marketing for parts specified with wider operating temperature ranges.

Consult LTC Marketing for information on lead based finish parts.

For more information on lead free part marking, go to: http://www.linear.com/leadfree/

For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

4311fa

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating

temperature range, otherwise specifications are at T_A = 25°C. V_{CC} = 3.3V, unless otherwise noted.

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 4: The rise time of an 1^2C bus line is calculated from $V_{IL(MAX)}$ to $V_{\text{IH(MIN)}}$ or 0.9V to 2.1V (with $V_{\text{CC}} = 3V$). This parameter is guaranteed by design and not tested. With a minimum boosted pull-up current of 2.5mA: Rise Time = $(2.1V - 0.9V) \cdot 400pF/2.5mA = 0.19 \mu s$. **Note 5:** Determined by design, not tested in production.

Note 2: All currents into pins are positive. All voltages are referenced to GND unless otherwise specified.

Note 3: Thermal characteristics are determined with exposed pad soldered to GND plane. If the exposed pad is left open, thermal characteristics can be drastically different.

TYPICAL PERFORMANCE CHARACTERISTICS

(TA = 25°C, unless otherwise indicated)

Supply Current vs Temperature

TEMPERATURE (°C)

20 60

–20 0 40 80 100

4311 G05

–40

 $V_{CC} = 1.8V$

Boost Pull-Up Current vs Bus Capacitance 60

Rise Time vs Capacitance

Bus Input Threshold Voltage vs Supply Voltage

PIN FUNCTIONS

BUS1: Active Pull-up for Bus. Connect to either clock line or data line for 2-wire bus.

BUS2: Active Pull-up for Bus. Connect to either clock line or data line for 2-wire bus.

ENABLE: Device Enable Input. This is a 1V nominal digital threshold input pin. For normal operation drive ENABLE to a voltage greater than 1.5V. Driving ENABLE below the 0.4V threshold puts the device in a low (<5μA) current shutdown mode and puts the BUS pins in a high impedance state. If unused, connect to V_{CC} .

EXPOSED PAD (DFN Package Only): Exposed Pad may be left open or connected to device ground.

GND: Device Ground. Connect this pin to a ground plane for best results.

V_{CC}: Supply Voltage Input. Connect this pin to bus supply and place a bypass capacitor of at least 0.01μF close to V_{CC} for best results.

BLOCK DIAGRAM

OPERATION

I 2C and SMBus Overview

The I²C communication protocol employs open-drain pull-down drivers with resistive or current source pullups. This protocol allows multiple devices to drive and monitor the bus without bus contention. The simplicity of resistive or fixed current source pull-ups is offset by the slow rise times resulting when bus capacitance is high. Rise times can be improved by using lower pull-up resistor values or higher fixed current source values, but the additional current increases the low state bus voltage, decreasing noise margins. Slow rise times can seriously impact data reliability, enforcing a maximum practical bus speed well below the established ²C or SMBus maximum transmission rate.

The LTC4311 overcomes these limitations by providing a boosted pull-up current only during positive bus transitions to quickly slew large bus capacitances. Therefore, rise time is dramatically improved, especially with maximum or out of specification 1^2C or SMBus loading conditions.

The LTC4311 has separate but identical circuitry for each BUS output pin. The circuitry consists of a positive edge slew rate detector and a voltage comparator. The voltage comparator has a supply dependent threshold. At supply voltages below 2.7V the comparator threshold is $0.3V_{CC}$. and at higher voltages the comparator threshold is a constant 0.8V. This allows the rise time accelerator to be used in non-compliant systems where the bus thresholds are optimized for low voltage operation, while still meeting standard thresholds for compliant $1²C$ and SMBus systems.

The slew limited pull-up current is only turned on if the bus line voltage is greater than the supply dependent comparator threshold voltage and the positive slew rate of the bus line is greater than the typical 0.2V/μs threshold of the slew rate detector. The pull-up current remains on until the voltage on the bus line is within 0.4V of V_{CC} or the slew rate drops below 0.2V/μs.

The pull-up current is slew limited to maintain signal integrity for busses that have very little capacitive load. In a lightly loaded system a strong pull-up could result in fast edge rates that cause reflections on the bus. These reflections can be detected by devices on the bus as extra clock edges, could result in erroneous data, or cause a stuck bus. An internal slew limit comparator limits the rate the pull-up current can slew the bus lines to 100V/μs.

Auto Detect Standby Mode and Shutdown Mode

When BUS1 and BUS2 are both high the LTC4311 reduces the standby supply current. Internal comparators detect when the bus pins are within 400mV of V_{CC} , and reduce the supply current to 26μA. When the ENABLE pin is grounded, the LTC4311 enters a low $(*5*\mu A)$ supply current shutdown mode. Both bus pins are high impedance in shutdown, regardless of the bus pin voltage.

Selecting the values of R_S and R_P

The typical configuration for the data bus for a 2-wire bus is shown in Figure 1. The parameters R_P and R_S should be chosen carefully. A description of the process for choosing the values of R_P and R_S follows.

An external pull-up resistor R_P is required in each bus line to supply a steady state pull-up current if the bus is at logic zero. This pull-up current is used for slewing the bus line during the initial portion of the positive transition in order to activate the LTC4311 pull-up current.

Using an external pull-up resistor R_P to supply steady state pull-up current provides the freedom to adjust rise time versus fall time as well as defining the low state logic-level $(V_{\Omega}$).

For I/O stage protection from ESD and high voltage spikes on the bus, a series resistor R_S (Figure 1) is sometimes added to the open drain driver of the bus agents.

Figure 1. Typical 2-Wire Bus Configuration

Both the values of R_P and R_S must be chosen carefully to meet the low state noise margin and all bus timing requirements.

A discussion of the electrical parameters affected by the values of R_S and R_P , as well as the general procedure for selecting the values of R_S and R_P follows.

Low State Noise Margin

A low value of V_{OL} , the low state logic level, is desired for good noise margin. V_{OL} is calculated as follows:

$$
V_{OL} = \frac{R_L \bullet V_{CC}}{R_L + R_P}
$$
 (1)

 R_l is the series sum of R_S and R_{ON} , the on resistance of the open-drain driver.

Increasing the value of R_P decreases the value of V_{OL} . Increasing R_1 increases the value of V_{OL} .

Initial Slew Rate

The initial slew rate, SR, of the bus is determined by:

$$
SR = \frac{V_{CC} - V_{OL}}{R_P \bullet C_{BUS}}
$$
 (2)

SR must be greater than SR_{THRESH} , the LTC4311 slew rate detector threshold (0.5V/μs max), in order to activate the pull-up current.

I 2C Rise and Fall Time

Rise time of an $1²C$ line is derived using equation 3.

$$
t_r = -R_p \bullet C_{BUS} \bullet
$$

$$
ln \left\{ \frac{V_{IHMIN} - V_{CC} - R_p \bullet I_{PULLUPAC}}{V_{ILMAX} - V_{CC} - R_p \bullet I_{PULLUPAC}} \right\}
$$
 (3)

Fall time of an 1^2C line is derived using equation 4.

$$
t_{f} = R_{T} \bullet C_{BUS} \bullet \ln \left\{ \frac{\frac{V_{IHMIN}}{V_{CC}} \bullet (R_{P} + R_{L}) - R_{L}}{\frac{V_{ILMAX}}{V_{CC}} \bullet (R_{P} + R_{L}) - R_{L}} \right\}
$$
(4)

where R_T is the parallel equivalent of R_P and R_L .

For an 1^2C system with fixed input levels, $V_{ILMAX} = 1.5V$ and V_{IHMIN} = 3V. For 1²C systems with V_{CC} related input levels, $V_{ILMAX} = 0.3V_{CC}$ and $V_{IHMIN} = 0.7V_{CC}$.

 $C_{\rm BUS}$ is the total capacitance of the I²C line.

SMBus Rise and Fall Time

Rise time of a SMBus line is derived using equations 5, 6 and 7.

$$
t_r = t_1 + t_2 \tag{5}
$$

 $t₁$ is the time from when the bus crosses the lower slew rate measurement point, until the bus reaches V_{THR} and the accelerators fire. The time from when the accelerators fire until the bus reaches the upper slew rate measure point is given by t_2 . Equations for t_1 and t_2 are given here:

$$
t_1 = -R_P \bullet C_{BUS} \bullet \ln \left\{ \frac{V_{THR} - V_{CC}}{V_{ILMAX} - 0.15V - V_{CC}} \right\}
$$
(6)

If (V_{ILMAX} – 0.15V) > V_{THR}, then $t_1 = 0$

$$
t_{2} = -R_{P} \cdot C_{BUS} \cdot
$$
\n
$$
\ln \left\{ \frac{V_{IHMIN} + 0.15V - V_{CC} - R_{P} \cdot I_{PULLUPAC}}{V_{THR} - V_{CC} - R_{P} \cdot I_{PULLUPAC}} \right\}
$$
\n(7)

Fall time of an SMBus line is derived using equation 8:

$$
t_{f} = R_{T} \cdot C_{BUS} \cdot
$$
\n
$$
\ln \left\{ \frac{V_{IHMIN} + 0.15V}{V_{CC}} \cdot (R_{P} + R_{L}) - R_{L} \right\}
$$
\n
$$
V_{ULMAX} - 0.15V \cdot (R_{P} + R_{L}) - R_{L}
$$
\n
$$
V_{CC}
$$
\n(8)

For an SMBus system, $V_{II,MAX} = 0.8V$ and $V_{II,MIN} = 2.1V$. C_{BUS} is the total bus capacitance of the SMBus line.

A general procedure for selecting R_P and R_L is as follows:

- 1. R_L is first selected based on the I/O protection requirement. Generally, an R_S of 100 Ω is sufficient for high voltage spikes and ESD protection. R_{ON} is determined by the size of the open-drain driver, a large driver will have a lower R_{ON} .
- 2. The value of R_P is determined based on the V_{OL} and minimum slew rate requirements. The V_{Ω} will determine the smallest resistance value that can be used in a system, and the minimum slew requirement will bound the resistance on the upper end. Generally the largest value of resistance that meets the minimum slew rate with some margin will be selected.
- 3. For I2C systems incorporating the LTC4311, the rise times are met under most loading conditions, due to the strong accelerator current. The pull-down drivers are typically low impedance, and therefore fall times are not generally an issue. Rise and fall time requirements must be verified using equations 3 and 4 (for an I2C system) or equations 5 to 8 (for an SMBus system). The value chosen for R_P must ensure that both the rise and fall time specifications are met simultaneously.

I 2C Design Example

Given the following conditions and requirements:

$$
V_{CC} = 3.3V NOMINAL
$$

\n
$$
V_{OL} = 0.4V MAXIMUM
$$

\n
$$
C_{BUS} = 600pF
$$

\n
$$
V_{ILMAX} = 0.99V, V_{IHMIN} = 2.31V
$$

\n
$$
t_r = 0.3 \mu s MAXIMUM, t_f = 0.3 \mu s MAXIMUM
$$
 (9)

If an R_S of 100 Ω is used and the max R_{ON} of the driver is 200 Ω , then R_L = 200 Ω + 100 Ω = 300 Ω . Use equation 1 to find the required R_P to meet V_{Ω} .

$$
R_{p} = \frac{300\Omega \cdot (3.3V - 0.4V)}{0.4V}
$$

R_p = 2.175k (10)

4311fa

This is the lowest resistor value that may be chosen and still meet V_{OL} . Next calculate the largest value of R_P that will satisfy SR, the minimum slew rate requirement. Using V_{O} = 0.4V and SR = 0.5V/us calculate the value of R_P with equation 2.

$$
R_{P} = \frac{3.3V - 0.4V}{600pF \cdot 0.5V/\mu s}
$$

\n
$$
R_{P} = 9.667k
$$
 (11)

This is approximately the largest value of R_P that will satisfy the minimum slew rate requirement. Since R_P is larger than 2.175k the V_{OL} will be below 0.4V, and the slew rate will actually be faster than calculated. Choosing $R_P = 10k$, V_{OL} and SR are recalculated.

$$
V_{OL} = \frac{300\Omega \cdot 3.3V}{300\Omega + 10k\Omega} = 96mV
$$

SR = $\frac{3.3V - 96mV}{10k\Omega \cdot 600pF} = 0.534V / \mu s$ (12)

The rise and fall times need to be verified using equations 3 and 4.

$$
t_r = -10k\Omega \cdot 600pF \cdot
$$
\n
$$
\ln \left\{ \frac{2.31V - 3.3V - 10k\Omega \cdot 2.5mA}{0.99V - 3.3V - 10k\Omega \cdot 2.5mA} \right\} = 0.297\mu s
$$
\n
$$
t_f = 291\Omega \cdot 600pF \cdot
$$
\n
$$
\ln \left\{ \frac{\frac{2.31}{3.3V} \cdot (10k\Omega + 300\Omega) - 300\Omega}{\frac{0.99V}{3.3V} \cdot (10k\Omega + 300\Omega) - 300\Omega} \right\} = 0.158\mu s
$$
\n(14)

Both the rise and fall times meet the 0.3μs I2C requirement and the V_{01} is satisfied, while meeting the minimum slew rate requirement, so R_P is chosen to be 10k.

If t_r is not met, R_P should be decreased and if t_f is not met then R_P should be increased.

SMBus Design Example

Given the following conditions and requirements for a low power SMBus system:

$$
V_{CC} = 3.3V NOMINAL
$$

\n
$$
V_{OL} = 0.4V MAXIMUM
$$

\n
$$
C_{BUS} = 400pF
$$

\n
$$
V_{ILMAX} = 0.8V, V_{IHMIN} = 2.1V
$$

\n
$$
t_r = 1 \mu s MAXIMUM, t_f = 0.3 \mu s MAXIMUM
$$
 (15)

If an R_S of 100 Ω is used and the max R_{ON} of the driver is 200Ω, then R_L = 200Ω + 100Ω = 300Ω. Use equation 1 to find the required R_P to meet V_{O1} .

$$
R_{P} = \frac{300\Omega \cdot (3.3V - 0.4V)}{0.4V}
$$

R_P = 2.175k (16)

Calculate Maximum R_P from equation 2.

$$
R_{p} = \frac{3.3V - 0.4V}{400pF \cdot 0.5V/\mu s}
$$

\n
$$
R_{p} = 14.5k
$$
 (17)

Choose $R_P = 13k$ and recalculate V_{OL} and SR.

$$
V_{OL} = \frac{300\Omega \cdot 3.3V}{300\Omega + 13k\Omega} = 74mV
$$

SR = $\frac{3.3V - 74mV}{13k\Omega \cdot 400pF} = 0.62V / \mu s$ (18)

The rise and fall times need to be verified using equations 5 to 8.

$$
t_1 = -13k\Omega \bullet 400pF \bullet
$$

$$
\ln \left\{ \frac{0.9V - 3.3V}{0.8V - 0.15V - 3.3V} \right\} = 0.515\mu s
$$
 (19)

$$
t_2 = -13k\Omega \cdot 400pF \cdot
$$

$$
\ln\left\{\frac{2.1V + 0.15V - 3.3V - 13k\Omega \cdot 2.5mA}{0.9V - 3.3V - 13k\Omega \cdot 2.5mA}\right\} = 0.205\mu s
$$
 (20)

$$
t_r = t_1 + t_2 = 0.515 \mu s + 0.205 \mu s = 0.72 \mu s
$$
\n(21)

$$
t_{f} = 293\Omega \cdot 400pF \cdot
$$
\n
$$
\ln \left\{ \frac{2.1V + 0.15V}{3.3V} \cdot (13k\Omega + 300\Omega) - 300\Omega \right\}
$$
\n
$$
= 0.156 \mu s \qquad (13k\Omega + 300\Omega) - 300\Omega
$$
\n(22)

The rise time meets the 1μs SMBus requirement and the fall time meets the 0.3µs requirement. The V_{O} is satisfied while meeting the minimum slew rate requirements, so R_P is chosen to be 13kΩ. If the rise time was not met due to a large t_1 , equation 6 can be used to calculate a maximum value of R_P that will meet the rise time requirements.

ACK Data Setup Time

Care must be taken in selecting the value of R_S (in series with the pull-down driver) to ensure that the data setup time requirement for ACK (acknowledge) is fulfilled. An acknowledge is the host releasing the SDA line (pulling high) at the end of the last bit sent and the slave device pulling the SDA line low before the rising edge of the ACK clock pulse.

The LTC4311 5mA pull-up current is activated when the host releases the SDA line, allowing the voltage to rise above the LTC4311's comparator threshold (V_{THR}) . If a slave device has a high value of R_S , a longer time is required for the slave device to pull SDA low before the rising edge of the ACK clock pulse. To ensure sufficient data setup time for ACK, slave devices with high values of R_S should pull the SDA low earlier.

An alternative is the slave device can hold the SCL line low until the SDA line reaches a stable state. Then, SCL can be released to generate the ACK clock pulse.

Multiple LTC4311s in Parallel

In very heavily loaded systems, stronger pull up current may be desired. Two LTC4311's may be used in parallel to increase the total pull up current to meet rise time requirements.

Notes on Using the LTC4311 in LTC1694 Applications

Although the LTC1694 and LTC4311 are functionally similar accelerators for I^2C , SMBus, and other comparable open drain/collector bus applications, the LTC4311 offers a lower power, higher performance solution in a smaller package as compared to the LTC1694. These and other differences are listed in Table 1 and must be accounted for if using the LTC4311 in LTC1694 applications.

Table 1. Differences Between LTC1694 and LTC4311

PACKAGE DESCRIPTION

DC Package 6-Lead Plastic DFN (2mm × **2mm)** (Reference LTC DWG # 05-08-1703)

SC6 Package 6-Lead Plastic SC70 (Reference LTC DWG # 05-08-1638 Rev B)

TLINEAR

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. 4311fa