

Application Tooling

Hand Tools

AMP CERTI-CRIMP Hand Tools are our top-of-the-line crimping tools featuring the original ratcheted crimp control. All tools are designed to exacting specifications, and manufactured using high quality materials to provide long service life. Recommended for low production runs, repairs and prototype work, and applications requiring consistent, highly-reliable terminations. See Catalog 65780 for further information.

Typical CERTI-CRIMP Hand Tools with Integral (Non-Interchangeable) Dies

Part Number 69477-1 for 50 Ohm BNC Dual Crimp MIL Type Connectors

Part Number 220015-1 for 50 Ohm N Connectors

CERTI-CRIMP Hand Tool with Interchangeable Dies

Hand Tool Kit for SMA and Blindmate Connectors Part Number 59981-1

	Part Numbers		
Item Description	AMP	Military (M22520/)	
Hand Tool	59980-1	36-01	
Plug Locator (without Center Contact)	220220-2	36-06	
Plug Locator (with Center Contact)	220221-2	36-04	
Jack Locator	220222-2	36-05	
Die Set for RG-402/U Cable (.141 [3.58] O.D.)	312253-1	36-03	
Die Set for RG-405/U Cable (.086 [2.18] O.D.)	312253-2	36-02	
Cutoff Fixture	311395-1	36-09	
Cable Dressing Fixture	311396-1	36-07	
Trimmer Tool	312317-1	36-08	
Cable Bend Fixture Assembly Includes following 6 items:	220224-1	36-10	
Bend Segment, RG-402/U (.125 [3.18] Radius)	311386-1	36-11	
Bend Segment, RG-402/U (.250 [6.35] Radius)	311386-2	36-12	
Bend Segment, RG-405/U	311386-3	36-13	
Tool Holder	311392-1	_	
Limiting Pin	307581-1	_	
Conforming Block	312067-1	_	
Hex Wrench	21027-6	_	
Carrying Case	13126-1	_	
Insert, Case	13127-1	_	

Products for Aerospace and	
Defense Applications	

Solder Assembly Kit **Brass SMA Connectors**

AMP Kit Part Number 1055420-1 M/A-COM Kit Part Number 2098-5066-54 For installation of SMA connectors to .035 [0.89] and .141 [3.58] diameter semi-rigid cable

Universal Compression Crimp Tool

AMP Kit Part Number 1055835-1 M/A-COM Kit Part Number 2598-5200-54

AMP Universal Compression Crimp Tool offers the ability to rapidly produce cable assemblies using solderless compression crimp connectors with semi-rigid cables. This universal assembly tool kit will attach SMA, OSP, N and TNC series connectors to .141 [3.58], .085 [2.16] and .250 [6.35] cable quickly and consistently with excellent mechanical and electrical results

The tool kit permits single hand assembly. Anvils and cable supports can be quickly changed. Crimp lengths can be adjusted from .001 [.025] to 1.000 [25.4] in increments of .001 [.025]. Sharp radius bends in cables are easily accommodated. The kit contains:

Chillip Flattie	1000001-1	2090-0190-04
Calibration Gauge	1055832-1	2598-5197-54
.141 [3.58] Cable Support	1055833-1	2598-5198-54
.085 [2.16] Cable Support	1055834-1	2598-5199-54
SMA Plug Anvil	1055836-1	2598-5201-54
SMA Jack Anvil	1055837-1	2598-5202-54
Type N Plug Anvil	1055838-1	2598-5203-54
Type N Jack Anvil	1055839-1	2598-5204-54
TNC Plug Anvil	1055840-1	2598-5205-54
TNC Jack Anvil	1055841-1	2598-5206-54
OSP Plug Anvil	1055842-1	2598-5207-54
OSP Jack Anvil	1055843-1	2598-5208-54

All tools may be purchased separately.

454

Products for Aerospace and Defense Applications

Dimensions are in inches and millimeters unless otherwise specified. Values in brackets are metric equivalents.

Description

Crimp Eromo

> Dimensions are shown for reference purposes only. Specifications subject to change.

Technical Support -Refer to inside back cover.

MIL-C-22520/10-01 **Equivalent Hex Crimp Kit AMP Kit Part Number** 1055236-1

M/A-COM Kit Part Number 2098-0105-54

For military specified applications requiring quick and efficient cable to connector attachment. Five popular hex die sizes are available to crimp the outer cable conductor to connector housings.

Crimp Tool

The kit contains:

Description	AMP Part Number	M/A-COM Part Number (Ref. Only)
Crimp Tool	1060713-1	9098-5105-54
Die Change Tool	1060716-1	5698-5014-54
Hex Die — A, B, C	1060714-1	5698-5015-54
Hex Die — D, E	1060715-1	5698-5016-54

All tools may be purchased separately. For the assembly of SMA connectors, Accessory Kit Part Number 1055421-1 is required.

A basic instruction sheet, included with the kit, aids in proper die selection

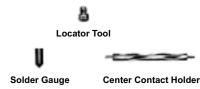
AMP Hex Die Part Number	M/A-COM Hex Die Part Number (Ref. Only)	Die	Hex Size ±.003 [0.08]	For Use With RG/U Cable
		А	.105 2.67	178B & 196A
1060714-1	5698-5015-54	В	.213 5.41	55B, 58C, 141A, 142B, 223, 303, & 400
		С	.128 3.25	174, 174B, 179, 187A, 188A, & 316
1060715-1	5698-5016-54	D	.178 4.52	180B, 195A, & 122
1000710-1	5696-5016-54	E	.255 6.48	59, 62A, 71B, 210, & 302

Additional Dies Available

AMP Hex Die Part Number	M/A-COM Hex Die Part Number (Ref. Only)	Hex Size ±.003 [0.08]	For Use With RG/U Cable
1055270-1	2098-0323-54	.151 3.84	RD316 Double Braid

SMA Crimp Tool Accessory Kit

The kit contains:


AMP Kit Part Number 1055421-1 M/A-COM Kit Part Number

2098-5067-54

For installation of SMA connectors to flexible braided cable. Crimp type SMA connectors require Hex Crimp Kit Part Number 1055236-1.

Description	AMP Part Number	M/A-COM Part Number (Ref. Only)
Center Contact Holder	1055454-1	2098-5221-10
Locator Tool	1055446-1	2098-5213-02
Locator Tool	1055451-1	2098-5218-02
Solder Gauge .015 [0.38]	91362-1	2098-5212-02

All tools may be purchased separately.

Dimensions are shown for reference purposes only. Specifications subject to change. Technical Support -Refer to inside back cover.

Stripping Tools

The hand-operated AMP Coaxial Cable Stripper features interchangeable, color-coded blade cassettes and V-blocks to accommodate 2- or 3-step stripping for cable diameters ranging from 2.54 [.10] through 7.62 [.30]. You strip cable by simply clamping and rotating the tool around the cable. See Instruction Sheet IS 2766 for further information.

For Use With Connector Type	Tool No.
BNC Single Crimp	603995-1
BNC Commercial and UHF Miniature	603995-2
UHF Standard	603995-3
BNC MIL Type Dual Crimp	603995-5
BNC Commercial Dual Crimp	603995-6

Manual Trim and Point Tool

Tyco Electronics offers a manual tool that performs both trimming and pointing operations. Tools are available for .141 [3.58] and .085 [2.16] diameter semi-rigid cable. These hand-operated tools are ideally suited for engineering, small production runs or field use. They feature tungsten carbide cutters for durability up to 30 times longer than the life of a high speed steel cutter. Replacement cutters are interchangeable and may be purchased separately.

Replacement Cutters Trimmer: Part Number 1055813-1 Pointer: Part Number 1055814-1

AMP Tool Part Number	M/A-COM Tool Part Number (Ref. Only)	Cable	Trim Length
1055811-1	2598-5116-54	RG-402/U (.141 [3.58])	.085 2.16 Fixed
1055815-1	2598-5120-54	RG-405/U (.085 [2.16])	.070 1.78 Fixed
1055823-1	2598-5137-54	RG-402/U (.141 [3.58])	Adjustable*
1055824-1	2598-5138-54	RG-405/U (.085 [2.16])	Adjustable*

The tools listed here are designed specifically to strip and

terminations time after time, without heat damage from

-0

Part Number 59980-1 Frame only — does not include

dies and locator

terminate semi-rigid cable. These tools operate basically the

same as the flexible cable tools, in that they produce uniform

*Adjustable trim length from .050 [1.27] to .140 [3.56].

Replacement Collets

Semi-Rigid Cable Tooling

Hand Tool for BNC and TNC Semi-Rigid Cable Connectors

soldering.

AMP Part Number	M/A-COM Part Number (Ref. Only)	Cable
1055825-1	2598-5145-54	RG-402/U (.141 [3.58])
1055827-1	2598-5167-54	RG-405/U (.085 [2.16])

Cable Benders for Semi-Rigid Cable

Cable Bender

Trimming Tools for Semi-Rigid Cable

For soldered semi-rigid cable connectors using the cable center conductor as its contact. These tools are optional for most installations but recommended for optimum connector performance.

Description	AMP Part Number	M/A-COM Part Number (Ref. Only)	Bend Radius*
Cable Bender for RG-405/U (.085 [2.16])	1055479-1	2098-5287-54	1/4 [6.4] 3/8 [9.8]
Cable Bender for RG-402/U (.141 [3.58])	1055478-1	2098-5286-54	3/8 [9.8] 1/2 [12.7]

*Radius of the bend is measured from the centerline of the cable.

100			100	100	
- 65	-			80	
		_	1000	1.0	

Trim Tool

Description	AMP Part Number	M/A-COM Part Number (Ref. Only)
Trim Tool for SMA Connectors RG-402/U (.141 [3.58])	1055455-1	2098-5272-02
Trim Tool for SSMA Connectors RG-405/U (.085 [2.16])	1055465-1	2098-5269-02

456

Products for Aerospace and Defense Applications

Dimensions are in inches and millimeters unless otherwise specified. Values in brackets are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change. Technical Support — Refer to inside back cover.

Cable Trimmers for Production

Tyco Electronics cable trimmers are designed for production trimming of RG-402/U (.141 [3.58]) and RG-405/U (.085 [2.16]) coaxial cables in preparation for connector installation. The trimming operation produces an unusually clean, burr-free cut with minimum smear. The length and depth of cut are adjustable. Replacement hardware can be used with either tool.

Cable Pointers for Production

Tyco Electronics cable pointers are designed to point straight and bent cables and are adjustable for desired center conductor length. The cable pointers cut 90° point on copper as well as copper-clad center conductors.

Cable Trimmers

Description	AMP Part Number	M/A-COM Part Number (Ref. Only)
RG-402/U (.141 [3.58])	1055526-1	2098-5676-54
RG-405/U (.085 [2.16])	1055530-1	2098-5686-54

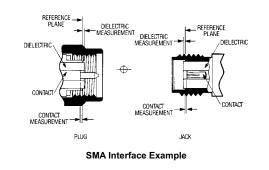
Replacement Hardware

Description	AMP Part Number	M/A-COM Part Number (Ref. Only)
Saw Blade	1055524-1	2098-5674-54
Trim Saw Block (.141 [3.58])	1055527-1	2098-5678-54
Trim Saw Block (.085 [2.16])	1055528-1	2098-5679-54

Cable Pointers

Description	AMP Part Number Number	M/A-COM Part Number (Ref. Only)	Cable	AMP Replacement Cutter Part Number	M/A-COM Replacement Cutter Part Number (Ref. Only)
Single Pointer	1055525-1	2098-5675-54	RG-402/U (.141 [3.58])	- 1055529-1	2098-5681-54
Single Pointer	1080269-1	2098-5685-54	RG-405/U (.085 [2.16])	1055529-1 2	2090-3001-34

Interface Inspection Gauges


Tyco Electronics offers Connector Interface Gauges. They have shock proof and fully jeweled dial indicators. The rugged construction of the dial mechanism minimizes the need for repair or replacement.

The gauge heads are manufactured from a corrosion resistant, hardening stainless steel which is heat treated for longer life. All critical surfaces are ground and lapped for precision fit and superior surface finish. The heads are securely fastened onto the dial indicator for no movement between the gauge head and the dial indicator spindle allowing for precise measurements.

Like the gauge heads, the plungers are specially designed to provide strength and durability.

Connector	Туре	AMP Gauge Kit Part Number	M/A-COM Gauge Kit Part Number (Ref. Only)
SMA	Jack	1055496-1	2098-5455-54
SIVIA	Plug	1055497-1	2098-5456-54



Products for Aerospace and Defense Applications

Dimensions are in inches and millimeters unless otherwise specified. Values in brackets are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change. Technical Support — Refer to inside back cover. www.tycoelectronics.com

457

Econo-Crimp Assembly Kit AMP Kit Part Number 1055779-1

M/A-COM Kit Part Number 2598-5005-54 For quick and efficient cable to connector attachment. Five popular hex die sizes are available to crimp the outer cable conductor to connector housings.

Item Description	AMP Part No.	M/A-COM Part No. (Ref. Only)
Crimp Tool	1055780-1	2598-5006-54
Hex Die — A, B, C	1055781-1	2598-5007-54
Hex Die — D, E	1055782-1	2598-5008-54

All tools may be purchased separately.

For the assembly of SMA connectors, Accessory Kit Part Number 2098-5067-54 is required. For SSMA connectors, Accessory Kit Part Number 2098-5272-54 is required.

AMP Hex Die Part Number	M/A-COM Hex Die Part Number (Ref. Only)	Die	Hex Size ±.003 [0.08]	For Use With RG/U Cable
		А	.105 2.67	178B & 196A
1055781-1	2598-5007-54	В	.213 5.41	55B, 58C, 141A, 142B, 223, 303, & 400
		С	.128 3.25	174, 174B, 179, 187A, 188A, & 316
1055782-1		D	.178 4.52	180B, 195A, & 122
1000782-1	2598-5008-54	E	.255 6.48	59, 62A, 71B, 210, & 302

AMP

Part Number

1055463-1

1055461-1

1055464-1

SSMA Crimp Tool Accessories AMP Kit Part Number 1055467-1 M/A-COM Kit Model Number T-550

Hex Die

Crimp Tool

For installation of SSMA connectors to flexible braided cable. Crimp type SSMA connectors require Hex Crimp Kit Part Number 1055779-1.

Products for Aerospace and Defense Applications

Dimensions are in inches and millimeters unless otherwise specified. Values in brackets are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

All tools may be purchased separately.

Description

Locator Tool

Holder

Center Contact

Locator Tool

Technical Support — Refer to inside back cover.

M/A-COM Part Number

(Ref. Only)

2098-5237-10

2098-5236-02

2098-5238-02

Center Contact Holder

Appendix A - Theory and Application

Theory and Application

As a leading manufacturer of RF products, Tyco Electronics produces a large variety of coaxial connectors. The proper selection and application of these connectors requires a knowledge of factors not involved in other types of connectors and terminals. The following paragraphs have been prepared to improve understanding of the theory behind RF connectors:

Basic RF Theory¹

RF energy travels by electromagnetic waves, and it is primarily the frequency of these waves that we are interested in. Briefly, if an oscillating voltage source is connected to a cable, a continuous electromagnetic wave will propagate along the cable. A sensor placed at some point on the cable would indicate a varying voltage (E field) as well as a current and magnetic field (H field) as the wave travels past it. This is called an electromagnetic wave because both electric and magnetic fields are varying. The wave shape is initially determined by the variation of the source with time.

Figure 7 shows the radiant energy spectrum. Visible light, radio, television, x-rays and Gamma rays are all phenomenon of electromagnetic waves at different frequencies. This introduction will treat only those that are generated by an electrical source and propagated along a physical cable or other transmission media. That is, frequencies above zero and up to about 50 gigahertz.

¹The majority of the technical terms, relative to RF and coaxial cable and connectors, used here-in and throughout this catalog are defined in the Glossary (Appendix E) starting on page 470.

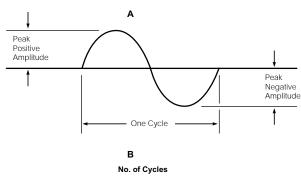
Frequency or Wavelengths	Designation	Applications
0 - 29.9 KHz	VLF (Very Low Frequency)	Commercial AC electricity, deep depth sounders, ultrasonic grinders, sonic oscillators
30 - 299.9 KHz	LF (Low sonar Frequency)	Shallow-to-medium depth sounders
300 - 2999.9 KHz	MF (Medium Frequency)	Commercial AM radio broadcasting, marine radio telephone, direction finders
3 - 29.9 MHz	HF (High Frequency)	Citizen band radio, amateur radio, international broadcasting
30 - 299.9 MHz	VHF (Very High Frequency)	VHF television (Channels 2 thru 13), commercial FM radio broadcasting, amateur radio, fire and police radio
300 - 2999.9 MHz	UHF (Ultra-high Frequency)	UHF television (Channels 14 thru 83), microwave ovens, aeronautical radionavigation
3 - 29.9 GHz	SHF (Super High Frequency)	Microwave communications, marine radar, aircraft tracking and airborne radars
30 - 299.9 GHz	EHF (Extremely High Frequency)	Space communications, radio astronomy

Notes:

1. KHz = Kilohertz (1 thousand cycles per second)

2. MHz = Megahertz (1 million cycles per second) 3. GHz = Gigahertz (1 billion cycles per second)

Figure 7


Radiant Energy Spectrum

In the following paragraphs we will discuss waves in greater detail, including the relationship of frequency and wave length, how pulses are formed and used, how each differs from the other and the problems involved in their transmission.

Sine Waves

An RF wave is a sine wave, meaning that it smoothly swings from zero to a positive peak value, then back down past zero to a negative peak value, then back to zero to complete a 360 electrical degree cycle. The positive and negative peaks are always equal in amplitude. The two qualities which characterize this type of wave are amplitude and frequency (f). Figure 8 shows these two characteristics. Amplitude refers to the peak value attained by the wave and corresponds to voltage. Frequency refers to the number of oscillations per second. For example, the sign wave in Figure 8(B) has completed 12 cycles in one second. Therefore, we would say that this wave has a frequency of 12 cycles per second or 12 Hertz. The time for one complete cycle is defined as the period (T). The relationship between the period and frequency is given by the equation:

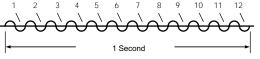


Figure 8

Typical Sine Wave Characteristics

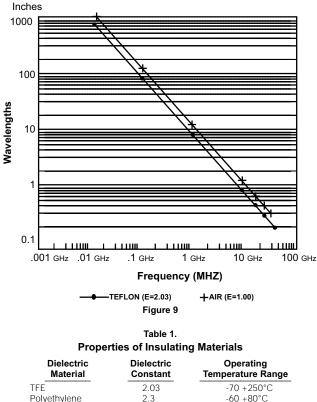
The wave travels away from the generator at speeds approaching the speed of light. When an electromagnetic wave travels in a medium other than air or vacuum, the **speed** for the wave is reduced by a factor of the square root of the dielectric constant (ϵ . The velocity (v) of the propagation of a signal is given by:

$$V = \sqrt{\varepsilon}$$

Where c is the speed of light, 3 x 108 m/sec or 1.18 x 1010 in/sec, and ϵ is the dielectric constant of the medium. (See Table 1 for dielectric constants of various materials) The **wavelength** of a signal is given by the formula

$$\lambda = v/f = \frac{c}{1.18 \times 10^{10}}$$
 inches

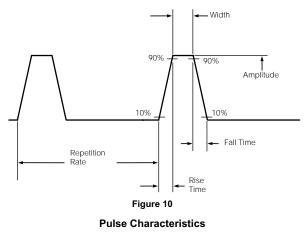
$$\lambda = v/f = \frac{1}{\sqrt{\epsilon} x f (GHz)} \frac{1}{\sqrt{\epsilon} x f (GHz)}$$
 Inc


RF Connectors

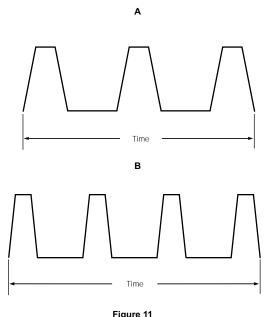
Products for Aerospace and Defense Applications

Dimensions are in inches and millimeters unless otherwise specified. Values in brackets are metric equivalents.

Dimensions are shown for reference purposes only. Specifications subject to change. Technical Support -Refer to inside back cover.



Material	Constant	Temperature Range
TFE	2.03	-70 +250°C
Polyethylene	2.3	-60 +80°C
Nylon	4.6-4.0	-40 +120°C
TPX	2.12	-65 +85°C
Polypropylene	2.25	-40 +105°C
Acetal	3.7	-65 +85°C


Pulses

The sine wave is most often used for communication purposes where intelligence is imposed on the wave by a variation in amplitude (amplitude modulation, AM) or by a variation in frequency (frequency modulation, FM).

Pulses, on the other hand, are primarily used in computers and digital instrumentation. Since pulses are generally used for triggering purposes, the pulse rise/fall time, amplitude and width are the most important. Figure 10 shows a pulse and identifies these characteristics.

Notice that rise time is the time required for the pulse to rise from 10% to 90% of its amplitude — not from zero to maximum. Rise and fall time is perhaps the single most important characteristic of a pulse in today's high-speed digital equipment. Figure 11 shows that the faster the rise and fall time, the more pulses will fit in a given time frame.

Pulse Rise and Fall Time

The bit rate for a system is the maximum rate of pulses per second that a system can process without causing data errors. The maximum performance can also be specified in terms of baud rate. The baud rate is defined as the number of characters (bytes) that are transmitted per second. Generally a character represents 10 bits (7 bits for the information, one parity bit, and two for start and stop, totalling 10).

Now that we know why fast pulses are required, the next problem is how to obtain faster rise times. A pulse is made up of a great number of different frequencies, and the more high frequencies a pulse contains, the faster will be its rise time and the flatter will be its peak. To better understand this, refer to Figure 12. At A, you will see a fundamental frequency (1), its third harmonic (3), and the resultant waveform (S3), which is a combination of 1 and 3. Although this does not yet resemble a square wave, you will note that the rise time is decreased, and a dip appears at the peak. At B of Figure 12, we have added the fifth harmonic. Rise time is further decreased, and the peak is beginning to flatten out. At C the seventh harmonic has been included, and the resultant wave S7 begins to resemble a square wave. As more high frequency harmonics are added to the waveform, it will more closely resemble a square wave, and the squarer it becomes, the faster will be the rise time.

460

Products for Aerospace and Defense Applications Dimensions are in inches and millimeters unless otherwise specified. Values in brackets are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change. Technical Support — Refer to inside back cover.

Fast rise times and short pulse widths require high frequency components.

Two frequent causes of digital signal degradation can be (1) high capacitance of the transmission line and (2) impedance mismatches of connector transmission line or I/0 devices. Selection of an impedance-matched connector on a digital line, especially if short cable assemblies are used, can be as important as connector selection for an RF modulated line. **Reflected pulses out of phase with the original pulse can cause false signals or high error rates in a digital system.**

Since pulses with fast rise times are necessary in highspeed computers, any circuit element which could reduce or attenuate high frequency response is undesirable.

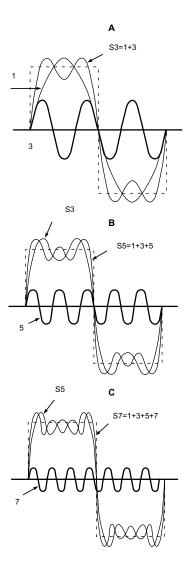


Figure 12 Development of a Square Wave

Signal Integrity and Propagation

To explain how to maintain signal integrity, it is necessary to review how the signal is configured in a cable and how it propagates. Ignoring digital signals for this discussion we will identify the issues that deal with the integrity of a sine wave. Consider a coaxial cable consisting of an inner conductor surrounded by a dielectric material and then an outer conductor (See Figure 13). The outer conductor may be a braid, a foil, or a solid metal.

Catalog 1308940

Issued 4-02

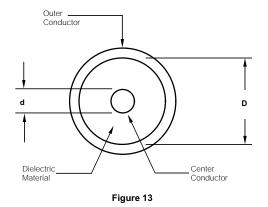
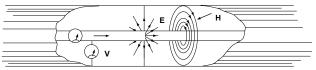



Diagram of a Cable

An electromagnetic wave traveling in a coaxial cable produces an electric and a magnetic field between the inner conductor and the outer conductor (Figure 14). The electric (E field) is radial and varies in time. An alternating current flows along the inner conductor and the outer conductor. An oscillating magnetic field (H field) circles the inner conductor.

Figure 14

Electric field (E) and magnetic field (H) belonging to the principal mode in a coaxial line.

The alternating current on a conductor is not spread throughout the conductor but is strongest at the surface and decays exponentially at points further into the conductor. This is called the skin effect. At a frequency of 1MHz, three skin depths is 0.0078" (95% of the current is within three skin depths of the surface) and at 10GHz three skin depths is 0.00078". As a result, the current is on the outer surface of the inner conductor and the inner surface of the outer conductor over the entire range of interest for most RF systems. The dimensions and material beyond several skin depths have no effect on the wave; gold plated plastic will propagate as well as gold plated copper at sufficiently high frequencies.

Products for Aerospace and Defense Applications

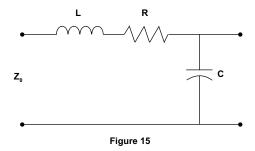
Dimensions are in inches and millimeters unless otherwise specified. Values in brackets are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change. Technical Support — Refer to inside back cover. 461

Attenuation

A wave loses energy (attenuates) in several ways: (1) The resistance of the inner and outer conductors is small but can be significant over long lengths and will produce some heat. (2) The dielectric may be lossy; its resistance is high but not infinite, and some energy is lost. (3) Electromagnetic energy radiates at high frequencies; significant energy losses are caused by radiation of electromagnetic energy (the cable acts like an antenna). (4) Energy is reflected due to impedance mismatches. The combination of these four types of losses are referred to as the insertion loss of a transmission line system. Connectors have similar losses.

Characteristic Impedance

A parameter which defines the behavior of a cable, connector, or any propagating system is Characteristic Impedance, Zo. The characteristic impedance of a lossless cable is related to the inductance per unit length, L, and the capacitance per unit length, C, as follows:


$$Zo = \sqrt{L/C}$$
 in ohms

The equivalent circuit of a transmission line is shown in Figure 15. R represents the conductor resistance for a unit length

For a coaxial cable the characteristic impedance is given by:

$$Zo = \frac{138}{\sqrt{\epsilon}} x \text{ Log}_{10} - \frac{D}{d}$$
 in ohms

where D is the inner diameter of the outer conductor and d is the outer diameter of the inner conductor, respectively. Similar equations apply for other geometries such as two parallel wires.

Typical Transmission Line Schematic

The maximum power is transferred between two systems if they have the same impedance. This is called impedance matching. However, impedance variations that are short compared to a wavelength can have a negligible effect on signal loss.

Standard impedances are 50 ohm, 75 ohm and 93-125 ohm. Most systems use 50 ohm because it is a compromise between maximum power transmission and minimum line loss. The telephone industry and the broadcast industry use 75 ohm for minimum line attenuation. The need for low capacitance instrumentation cable has produced the 93-125 ohm systems. The higher impedances are generally achieved by changing the conductor diameters and by modifying the dielectric material to add air.

462

Products for Aerospace and Defense Applications

Dimensions are in inches and millimeters unless otherwise specified. Values in brackets are metric equivalents.

Dimensions are shown for reference purposes only. Specifications subject to change. Technical Support -Refer to inside back cover. www.tycoelectronics.com

Reflections

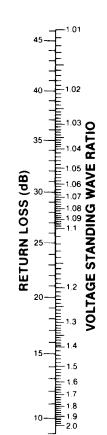
When the characteristic impedance changes in a transmission line system, part of an incident wave is reflected. The reflection coefficient can be calculated as:

Reflection Coefficient =
$$\rho = \frac{V_i}{V_p} = \frac{Z_R - Z_O}{Z_D + Z_O}$$

Where Vi and ZO are the incident voltage and impedance of the first media. V_R and Z_R represent the reflected voltage and impedance of the media that caused the reflection. The decibel loss due to reflection is given by:

Return Loss = 10 Log₁₀ (
$$\frac{1}{1-\rho^2}$$
) dB

VSWR

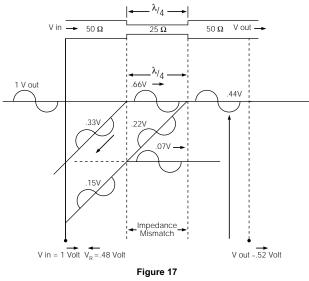

The traditional way to determine the reflection coefficient is to measure the standing wave caused by the superposition of the incident wave and the reflected wave. Traditionally the voltage is measured at a series of points using a slotted line. The ratio of the maximum divided by the minimum is the Voltage Standing Wave Ratio (VSWR). The VSWR is infinite for total reflections because the minimum voltage is zero. If no reflection occurs the VSWR is 1.0. VSWR and reflection coefficient are related as follows:

$$VSWR = (1 + \rho)/(1 - \rho)$$

Most present instrumentation measures the reflection coefficient and calculates the VSWR.

Figure 16 represents the direct relationship between VSWR and its equivalent in return loss (expressed in dB).

Figure 16 VSWR vs. Return Loss


Multiple Reflections

If there is a series of impedance changes, each one will have a reflection coefficient. The total reflection coefficient is the vector addition of each of the individual coefficients accounting for the distance between reflections and the reflection of any reflected waves. Even though the calculations are difficult, a total VSWR can still be measured.

Multiple reflections can produce a resonance phenomenon that is unique to wave theory. Properly understood some serious difficulties can be avoided. An example will make the point clear. Consider an electromagnetic wave with a wave-

length of 4 inches traveling on a cable that changes from 50 ohms to 25 ohms. The reflection coefficient is -.33, which means that one third of the incident voltage is reflected toward the source. Assume that one inch (one quarter wavelength) down the cable the impedance changes back to 50 ohm. Again, one third of the wave is reflected, but without any phase shift. It travels back to the first interface where one third of this reflected wave is reflected back toward the second interface. Two thirds of the wave is transmitted through the interface and travels back to the source. Since the first (reflected) wave is shifted 180 degrees at the reflection, and the second (transmitted-reflected-transmitted) wave is shifted 180 degrees because it traveled the one inch separation twice, the two waves are in phase. The net result is that the VSWR is much larger because the length of the 25 ohm section was just the right length to cause a resonance. If the length of the 25 ohm section had been one half wavelength, the two waves would have interfered and the VSWR would be at a minimum.

Multiple Wave Reflections

(Caused by Impedance Mismatch)

In summary, avoid cable lengths, printed circuit board paths, or connectors that are multiple of one quarter ($\lambda/4$, $3\lambda/4$, etc.) of the intended signal transmission wavelength. Coaxial cables, when manufactured, also have periodic variations in diameter that result in periodic changes in impedance (Zo), that can cause significant levels of reflected signal (high return loss) at specific frequencies.

Reflections of Digital Signals

The previous discussions dealing with attenuation, reflections and standing waves can apply to digital signals with some extra thought.

A single pulse can be thought of as a combination of high frequency sine waves. The maximum frequency component in a square wave pulse can be calculated by this equation:

> f = 0.35/rise time where

f = GHz when "t" is in nanoseconds

Attenuation of the frequencies necessary to support the short risetime will produce a slower rise and possibly prohibit the pulse from ever reaching the detector. This 'slurring' of the pulse is similar to the behavior of an RC circuit and the attenuation is sometimes called capacitive attenuation.

A series of pulses can demonstrate resonance. If a portion of a pulse is reflected at each interface, it is possible for them to come together and add up to form a new phantom pulse.

The critical frequency here is the bit rate. Think of a sine wave with a frequency the same as the bit rate; if it will resonate in the cable, the pulses will also. Extra pulses caused by resonance might easily result in an error signal from the receiving system requesting a retransmittal. The final result would be a communication system that is much slower than intended.

Cut-off Frequency

The cut-off frequency of a coaxial transmission line is the frequency at which modes of energy transmission, other than the "TEM" mode, can be generated.

fco =
$$\frac{7.5}{\sqrt{\epsilon} (D+d)}$$
 (in GHz)

(D and d are measured in inches)

Types of Transmission Lines

Twin Lead transmission cable is generally used where impedance matching alone is important, since it provides only minimal shielding. Impedance values of 300 ohms and 600 ohms are common. Lower impedance values require closer spacing of the conductors and are not normally available in this type of cable. A typical application for twin lead cable is in antenna lead wire for television sets.

Twisted Pair is a variation of the twin lead type. It consists of two lengths of ordinary hookup wire twisted together. A twisted pair provides relatively constant impedance plus better magnetic shielding than twin lead cables. It is flexible, inexpensive, easy to terminate and is used extensively by the computer industry. However, it should not be used when maximum shielding is required.

Dimensions are in inches and millimeters unless otherwise specified. Values in brackets are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change.

Shielded Twisted Pair Cable is used to eliminate inductive and capacitive coupling. Twisting cancels out inductive coupling, while the shield eliminates capacitive coupling. Most applications for this cable are between equipment, racks and buildings.

Flexible (Braided) Coaxial Cable is by far the most common type of closed transmission line because of its flexibility. It is a coaxial cable, meaning that both the signal and the ground conductors are on the same center axis. The outer conductor is made from fine braided wire, hence the name "braided coaxial cable". This type of cable is used in practically all applications requiring complete shielding of the center conductor. The effectiveness of the shielding depends upon the weave of the braid and the number of braid layers. Tyco Electronics manufacturers connectors for cable sizes ranging from less than 1/8 in. diameter, for low power applications of around 50 watts, to over 1/2 in. diameter for power of 850 watts at 100 MHz and voltages up to 5000. In addition to power handling capabilities, cables are available for high frequency applications, high and low temperature applications, severe environmental applications and many other specialized uses.

Triaxial Cable is used when higher "shielding" efficiency characteristics are required in applications similar to those using shielded twisted pair cable.

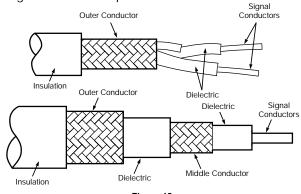


Figure 18

Twin Conductor and Triaxial Cable

-1000 -300 -200 -100 -8 Double Braid -60 -40 Single Copper Braid -30 -20 -10 .01 GH_z .1 GH₇ 1 GH₇ 10 GH; Figure 19 **Shielding Efficiencies**

Often you will hear the term "shielded cable". This is very similar to coaxial cable except the spacing between center conductor and shield is not carefully controlled during manufacture, resulting in non-constant impedance.

Semi-rigid Coaxial Cable uses a solid tubular outer conductor rather than the braided type, so that all the RF energy is contained within the cable. One of the drawbacks of braided cable is that the shielding is not 100% effective, especially at higher frequencies. This is because the braided construction can permit small amounts of short wavelength (high frequency) energy to radiate. Normally this does not present a problem; however, if a higher degree of shielding is required, semi-rigid coaxial cable is recommended. For applications using frequencies higher than 30 GHz a miniature semi-rigid cable is recommended. Various connectors are available from Tyco Electronics to terminate these cables.

Ribbon Coaxial Cable is a relatively recent Tyco Electronics innovation which combines the advantages of both ribbon cable and coaxial cable. Tyco Electronics currently provides both the cable and the insulation displacing coaxial connector to terminate the cable. Each individual coaxial cable consists of the signal conductor, dielectric, a foil shield and a drain wire which is in continuous contact with the foil. The entire assembly is then covered with an outer insulating jacket. The unique manufacturing feature of this cable is the precise placement of the drain wires to permit gang stripping of the outer jacket and foil. The major advantage of this cable is the speed and ease with which it can be mass terminated with the AMP insulation displacement technique. They can also be separated into individual coaxial lines and terminated with standard coaxial connectors as required.

464

Dimensions are in inches and millimeters unless otherwise specified. Values in brackets are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change. Technical Support — Refer to inside back cover.

Products for Aerospace and Defense Applications

Appendix B - Typical Coaxial Cable Specifications

Abbreviations

Dielectric	
	.Solid polyethylene
PTEE	.Solid polytetrafluoroethylene
PIB	.Polyisobutylene, Type B, per MIL-C-17
Rubber	.Per MIL-C-17D
Sil	.Silicone rubber
PS	.Polystyrene

Conductors and Braid Materials

AL	Aluminum
SCAAI	Silver covered copper covered aluminum
BC	Bare copper
SC	Silver covered copper
CCS	Copper covered steel
TC	Tinned copper
SCCS	Silver covered copper covered steel

SCCad Br.....Silver covered cadmium bronze GS......Galvanized steel TCCS......Tin copper covered steel SSC.....Silver covered strip HR.....High resistance wire SA....Silver covered alloy Jacket Material

PVC-1Black polyvinylchloride, contaminating, Type I, per MIL-C-17D	
PVC-IIGray polyvinylchloride, noncontaminating, Type II, per MIL-C-17D	
PVC-IIABlack polyvinylchloride, noncontaminating, Type IIA, per MIL-C-17D	
PE-IIIClear polyethylene	
PE-IIIAHigh molecular weight, black polyethylene, Type IIIA, per MIL-C-17D	
FG Braid VFiberglass, impregnated, Type V, per MIL-C-17D	
FEP-IXFluorinated ethylene propylene, Type IX, per MIL-C-17D	
PURPolyurethane, black specific compounds	

SIL/DAC-VI...Dacron braid over silicone rubber, Type VI, per MIL-C-17D

RubberPer MIL-C-17D

RG/U Type Cable	Inner Conductor	Dielectric Material	DOD	Number/Type of Shielding Braids	Jacket Material	0.D.	Weight (Ib/ft)	Nom. Imped. (Ohms)	Nom. Cap pf/ft	Max. Operating Temp. (C°)	Max. Operating Voltage (Volts RMS)	Comments
8	2.17 .0855 7/ 0.72 BC .0285	PE	7.24 .285	1/BC	PVC-I	10.29 .405	.106	52	29.5	-40 +80	4000	Use RG213
88	2.17 .0855 7/ 0.72 BC .0285	PE	7.24 .285	. 285 1/BC	PVC-IIA	10.29 .405	.106	52	29.5	-40 +80	5000	Use RG213
9	2.17 .0855 7/ 0.72 SC .0285	PE	7.11 .280	2/Inner SC Outer BC	PVC-II	10.67 .420	.140	51	30.0	-40 +80	4000	Use RG214
9A	2.17 .0855 7/ 0.72 SC .0285	PE	7.11 .280	2/SC	PVC-II	10.67 .420	.140	51	30.0	-40 +80	4000	Use RG214
9B	2.17 .0855 7/ 0.72 SC .0285	PE	7.11 .280	2/SC	PVC-IIA	10.67 .420	.150	50	30.8	-40 +80	5000	Use RG214
11	1.21 .0477 7/ 0.4 TC .0159	PE	7.24 .285	1/BC	PVC-I	10.29 .405	.096	75	20.6	-40 +80	4000	Use up to 100 MHz
11A	1.21 .0477 7/ 0.4 TC .0159	PE	7.24 .285	1/BC	PVC-IIA	10.29 .405	.096	75	20.6	-40 +80	5000	Use up to 1000 Mhz
55	0.81 BC .0320	PE	2.95 .116	2/TC	PE-III	5.08 .200	.032	53.5	28.5	-55 +80	1900	Use RG55B
55A	.0.89 SC .0350	PE	2.95 .116	2/SC	PVC-IIA	5.08 .200	.034	50	30.8	-40 +80	1900	Use RG223
55B	0.81 SC .0320	PE	2.95 .116	2/TC	PE-IIIA	5.08 .200	.033	53.5	28.5	-55 +80	1900	Use up to 1000 MHz
58	0.81 BC .0320	PE	2.95 .116	1/TC	PVC-I	4.95 .195	.029	53.5	28.5	-40 +80	1900	Use RG58B
58A	0.9 .0355	PE	2.95 .116	1/TC	PVC-I	4.95 .195	.029	52	28.5	-40 +80	1900	Use RG58C
58B	0.81 BC .0320	PE	2.95 .116	1/TC	PVC-IIA	4.95 .195	.029	53.5	28.5	-40 +80	1900	Use up to 1000 MHz
58C	0.9 .0355 19/ 0.8 TC .0071	PE	2.95 .116	1/TC	PVC-IIA	4.95 .195	.029	50	30.8	-40 +80	1900	Extra Flexible Version RG58B
59	0.64 CCS .0253	PE	3.71 .146	1/BC	PVC-I	6.15 .242	.032	73	21.0	-40 +80	2300	Use RG59B
59A	0.64 CCS .0253	PE	3.71 .146	1/BC	PVC-IIA	6.15 .242	.032	73	21.0	-40 +80	2300	Use RG59B
59B	0.58 CCS .0230	PE	3.71 .146	1/BC	PVC-IIA	6.15 .242	.032	75	20.6	-40 +80	2300	Use up to 1000 MHz

Products for Aerospace and Defense Applications

Dimensions are in inches and millimeters unless otherwise specified. Values in brackets are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change. Technical Support — Refer to inside back cover.

RG/U Type Cable	Inner Conductor	Dielectric Material	DOD	Number/Type of Shielding Braids	Jacket Material	0.D.	Weight (Ib/ft)	Nom. Imped. (Ohms)	Nom. Cap pf/ft	Max. Operating Temp. (C°)	Max. Operating Voltage (Volts RMS)	Comments
62A	0.64 CCS .0253	Air-space PE	3.71 .146	1/BC	PVC-IIA	6.15 .242	.038	93	13.5	-40 +80	750	Capacitance
62B	0.61 .0240 7/ 0.2 CCS .0080	Air-space PE	3.71 .146	1/BC	PVC-IIA	6.15 .242	.038	93	13.5	-40 +80	750	Extra Flexible RG62A
71	0.64 CCS .0253	Air-space PE	3.71 .146	2/TC	PVC-I	6.22 .245	.046	93	13.5	-40 +80	750	Use RG71B
71A	0.64 CCS .0253	Air-space PE	3.71 .146	2/TC	PE-III	6.22 .245	.046	93	13.5	-55 +80	750	Use RG71B
71B	0.64 CCS .0253	Air-space PE	3.71 .146	2/TC	PE-IIIA	6.22 .245	.046	93	13.5	-55 +80	750	Low Capacitance
122	0.76 .0300 7/ 0.13 TC .0050	PE	2.44 .096	1/TC	PVC-IIA	4.06 .160	.016	50	29.4	-40 +80	1900	Use up to 1000 MHz
124	0.64 TCCS .0253	Taped PTFE	3.43 .135	1/TC	FG Braid-V	6.1 .240	.210	73	20.3	-55 +250	2300	Use RG140
140	0.64 SCCS .0250	PTFE	3.71 1.46	1/SC	FG Braid-V	5.92 .233	.056	75	19.5	-55 +250	2300	See RG302 for FEP Jacket
141	0.91 SCCS .0359	PTFE	2.95 .116	1/SC	FG Braid-V	4.83 .190	.036	50	29.4	-55 +250	1900	Use RG141A
141A	0.99 SCCS .0390	PTFE	2.95 .116	1/SC	FG Braid-V	4.83 .190	.036	50	29.4	-55 +250	1900	See RG303 for FEP Jacket
142	0.91 SCCS .0359	PTFE	2.95 .116	2/SC	FG Braid-V	4.95 .195	.047	50	29.4	-55 +250	1900	Use RG142A
142A	0.99 SCCS .0390	PTFE	2.95 .116	2/SC	FG	4.95 .195	.047	50	29.4	-50 +250	1900	See RG142B for FEP Jacket
142B	0.99 SCCS .0390	PTFE	2.95 .116	2/SC	FEP	4.95 .195	.047	50	29.4	-55 +250	1900	Standard Center Cond. Available
174	0.48 .0189 7/ 0.16 CCS .0063	PE	1.52 .060	1/TC	PVC	2.54 .100	.008	50	30.8	-40 +80	1500	Miniature Data Transmission
178	0.3 .0120 7/ 0.1 SCCS .0040	PTFE	0.91 .036	1/SC	KEL-F	1.83 .072	.0054	50	29.4	-40 +150	1000	Use RG178B
178B	0.3 .0120 7/ 0.1 SCCS .0040	PTFE	0.86 .034	1/SC	FEP-IX	1.83 .072	.0054	50	29.4	-55 +200	1000	High Strength Cond. Available
179	0.3 .0120 7/ 0.1 SCCS .0040	PTFE	1.45 .057	1/SC	KEL-F	2.54 .100	.010	70	20.4	-55 +150	1200	Use RG179B
180B	0.3 .0120 7/ 0.1 SCCS .0040	PTFE	2.59 .102	1/SC	KEP-IX	3.56 .140	.019	95	15.4	-55 +200	1500	High Strength Cond. Available
188	0.51 .0201 7/0.17 SCCS .0067	PTFE	1.52 .060	1/SC	PTFE	2.67 .105	.011	50	29.4	-55 +250	1200	Use RG316
188A	0.51 .0201 7/ 0.17 SCCS .0067	PTFE	1.52 .060	1/SC	PTFE	2.67 .105	.011	50	29.4	-55 +250	1200	Use RG316
195A	0.3 .0120 7/ 0.1 SCCS .004	PTFE	2.59 .102	1/SC	PTFE	3.68 .145	.020	95	15.4	-55 +250	1500	Use RG180B
210	0.64 SCCS .0253	Air-Space PTFE	3.71 .146	1/SC	FG Braid-V	6.15 .242	.040	93	13.5	-55 +250	750	High Temp. Low Capacitance
213	2.26 .0888 7/ 0.75 BC .0296	PE	7.24 .285	1/BC	PVC-IIA	10.29 .405	.099	50	30.8	-40 +80	5000	Use up to 1000 MHz
214	2.26 .0888 7/ 0.75 SC .0296	PE	7.24 .285	2/SC	PVC-IIA	10.0 .425	.126	50	30.8	-40 +80	5000	Use up to 10,000 MHz

Appendix B - Typical Coaxial Cable Specifications

466

.

Products for Aerospace and Defense Applications

Dimensions are in inches and millimeters unless otherwise specified. Values in brackets are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change. Technical Support — Refer to inside back cover.

RG/U Type Cable	Inner Conductor	Dielectric Material	DOD	Number/Type of Shielding Braids	Jacket Material	0.D.	Weight (Ib/ft)	Nom. Imped. (Ohms)	Nom. Cap pf/ft	Max. Operating Temp. (C°)	Max. Operating Voltage (Volts RMS)	Comments
216	1.21 .0477 7/ 0.75 BC .0159	PE	7.24 .285	2/BC	PVC-IIA	10.8 .425	.114	75	20.6	-40 +80	5000	Use up to 1000 MHz
223	0.89 SC .035	PE	2.95 .116	2/SC	PVC-IIA	5.36 .211	.034	50	30.8	-40 +80	1900	Use up to 10,000 MHz
225	2.38 .0936 7/ 0.79 SC .0312	PTFE	7.24 .285	2/SC	FG Braid-V	10.92 .430	.180	50	29.4	-55 +250	5000	See RG393 for FEP Jacket
302	0.64 SCCS .0250	PTFE	3.71 .146	1/SC	FEP-IX	5.11 .201	.030	75	19.5	-55 +200	2300	FEP Jacketed RG140
303	0.99 SCCS .0390	PTFE	2.95 .116	1/SC	FEP-IX	4.32 .170	.088	50	29.4	-55 +200	1900	FEP Jacketed RG141A
316	0.51 .0201 7/0.17 SCCS .0067	PTFE	1.52 .060	1/SC	FEDP-IX	2.59 .102	.012	50	29.4	-55 +200	1200	FEP Jacketed RG188A
400	0.98 .0385 19/ 0.2 SPC .0077	PTFE	2.95 .116	2/SC	FEP-IX	4.95 .195	.050	50	29.3	-55 +200	1900	_
402	0.91 SCCS .0360	PTFE	3.02 .119	3.58 OD .141 Copper Tube	None	3.58 .141	.032	50	29.3	-40 +125	2500	Semi-rigid
405	0.51 SCCS .0201	PTFE	1.68 .066	2.18 OD .086 Copper Tube	None	2.19 .0865	.015	50	29.4	-40 +125	1500	Semi-rigid

Appendix B - Typical Coaxial Cable Specifications (Continued)

Appendix C - Maximum Power Handling Capabilities for Cables

Average Input Power in Watts

RG/U	Frequency in MHz									
Type Cable	10	50	100	200	400	1,000	3,000	5,000	10,000	
5, 5A, 5B	2,000	800	550	350	230	125	60	40	22	
8, 8A, 10A, 213, 215	3,700	1,300	850	540	350	190	95	65	37	
9, 9A, 9B, 214	3,700	1,300	850	540	350	190	95	65	37	
11, 11A, 12, 12A, 13, 13A, 216	2,500	1,000	650	400	260	150	70	50	26	
217	6,000	2,000	1,200	800	480	260	120	85	50	
22, 22B	1,700	650	430	280	190	110	50	38	20	
55, 55A, 55B, 223	800	310	205	137	90	53	28	20	10	
58, 58B	730	280	180	125	85	50	25	17	_	
58A, 58C	650	225	170	110	75	44	22	15	_	
59, 59A, 59B	1,300	480	310	200	135	77	40	27	15	
62, 62A, 71, 71A, 71B	1,300	480	310	200	135	77	40	27	15	
62B	1,150	420	280	180	120	69	35	25	14	
115, 115A, 165, 225, 393	25,000	9,500	6,300	4,300	2,800	1,700	880	620	350	
108, 108A	340	145	100	70	50	30	15	—		
122	540	205	140	90	60	35	18	12	_	
140, 141, 141A, 142, 142B, 302, 303, 400, 402	9,000	3,500	2,400	1,600	1,100	650	350	245	140	
143, 143A	11,500	4,600	3,200	2,100	1,450	850	460	330	190	
144	25,000	9,500	6,300	4,300	2,800	1,700	880	620	350	
161, 179, 179A, 179B, 187, 187A	1,600	780	570	420	310	200	110	76	41	
174, 174A	170	72	50	36	25	16	_	_	_	
178, 178A, 178B, 196, 196A	710	340	240	170	123	78	41	28	14	
180, 180A, 180B, 195, 195A	2,500	1,100	800	570	400	250	135	93	50	
188, 188A, 316	1,250	600	450	330	240	160	80	57	30	
210	8,500	3,300	2,300	1,600	1,100	620	310	220	140	

Note: Values above 3 GHz vary considerably depending on construction. Conditions: Ambient — 40°C Altitude — Sea level Center Conductor Temperature — 80°C for polyethylene, 200°C for PTFE

Appendix D - Nominal Loss Characteristics for Cables

Decibels per Hundred Feet

RG/U	Frequency in MHz									
Type Cable	10	50	100	200	400	1,000	3,000	5,000	10,000	
5, 5A, 5B	.80	1.40	2.90	4.30	6.40	11.00	22.00	30.00	52.00	
8, 8A, 10A, 213, 215	.66	1.50	2.20	3.20	4.60	9.00	19.00	28.00	47.00	
9, 9A, 9B, 214	.66	1.50	2.20	3.20	4.60	9.00	19.00	28.00	47.00	
11, 11A, 12, 12A, 13, 13A, 216	.66	1.50	2.20	3.20	4.60	9.00	19.00	28.00	—	
217	.41	1.00	1.40	2.10	3.10	5.80	13.00	19.00	31.00	
22, 22B	1.20	2.80	4.20	6.30	9.50	—	—	—	—	
55, 55A, 55B, 223	1.35	3.00	4.30	6.00	8.80	16.50	36.00	51.00	85.00	
58, 58B	1.20	3.10	4.60	7.00	10.00	17.50	38.00	_	_	
58A, 58C	1.40	3.30	4.90	7.30	11.00	20.00	41.00	_	_	
59, 59A, 59B	1.10	2.30	3.30	4.70	6.70	11.50	25.50	41.00	-	
62, 62A, 71, 71A, 71B	.90	1.90	2.80	3.70	5.20	8.50	18.40	29.50	—	
62B	.90	2.10	3.00	4.30	6.10	10.50	23.50	36.00	_	
115, 115A, 165, 225, 393	.60	1.40	2.10	3.10	4.50	7.50	14.00	21.00	35.00	
108, 108A	2.30	5.20	7.50	11.00	16.00	26.20	54.00	—		
122	1.60	4.40	6.90	11.00	16.60	29.20	57.20	89.00	_	
140, 141, 141A, 142, 142B, 302, 303, 400, 402	1.20	2.70	3.90	5.50	8.00	13.00	26.00	36.00	62.00	
143, 143A	.85	1.80	2.50	3.80	5.70	9.70	18.10	26.10	40.70	
144	.38	1.00	1.60	2.30	3.80	7.00	15.10	_	_	
161, 179, 179A, 179B, 187, 187A	5.00	7.90	9.80	12.70	15.80	25.00	43.00	62.50	135.00	
174, 174A	3.80	6.50	8.90	12.00	17.50	31.00	64.30	97.00	185.00	
178, 178A, 178B, 196, 196A	5.30	10.00	13.30	20.00	27.50	45.00	78.00	115.00	172.00	
180, 180A, 180B, 195, 195A	3.10	4.20	5.10	7.30	10.40	16.50	36.00	49.50	89.00	
188, 188A, 316	3.80	7.90	11.50	15.00	20.00	30.00	58.00	79.00	133.00	
210	.23	.58	.85	1.30	1.90	3.10	6.50	9.00	15.00	

Note: Values above 3 GHz vary considerably depending on construction.

Conditions

Ambient — 20°C

Appendix E - Glossary of Terms

Α

amplitude The magnitude of variation in a changing quantity from its zero value. The word requires modification — as with adjectives such as peak, maximum, rms, etc. — to designate the specific amplitude in question.

arc voltage voltage that continues to pass through a surge protector during activation of GDT(approx. 20 volts)

attenuation A reduction in power. It occurs naturally during wave travel through lines, waveguides, space or a medium such as water. It may be produced intentionally by placing an attenuator in a circuit. The amount of attenuation is generally expressed in decibels per unit of length.

В

back mounted A connector attached to the inside of a panel or box with its mounting flanges inside the equipment.

bellmouth Flared at the mouth. The rear of a properly crimped wire barrel will have a slight flare (bellmouth) to relieve the strain on the wire strands as they leave the area of high compression and take their natural "lay". A bell-mouth condition may also be present in front of the wire barrel.

BNC Connector A radio frequency connector covered by Military Specification. It has an impedance of 50 or 75 ohms, and is designed to operate in the 0 to 4 GHz frequency range. It features quick connect/disconnect by pin and cam bayonet coupling.

body Main or largest portion of a connector to which other portions are attached.

braid A weave of metal fibers used as a shield covering for an insulated conductor or group of insulated conductors. When flattened it may be used as a grounding strap.

broad-band E Interference generated over a wide range of frequencies (e.g., automotive ignition noise).

bulkhead A term used to define a mounting style of connectors. Bulkhead connectors are designed to be inserted into a panel cutout from the rear (component side) of the panel.

С

capacitance The property of an electrical conductor (dielectric in a capacitor) that permits the storage of energy as a result of electrical displacement. The basic unit of capacitance is the farad, however, measurement is more commonly in microfarads or picofarads.

cavity A metallic enclosure in some types of tubes and circuits within which resonant fields may be excited at the microwave frequency to which the cavity is tuned. Usually referred to as resonant cavity. See also: contact cavity.

characteristic impedance The ratio of voltage to current at any point along a transmission line on which there are no standing waves.

circular mil area (CMA) A unit of area equal to the area of a circle whose diameter is 1 mil (0.001 inch). Used chiefly in specifying cross-sectional areas of conductors. (See AMP Brochure No. 4402-8, Computing Circular Mil Area for AMP Terminals and Splices).

closed entry contact A female contact designed to prevent the entry of a pin or probing device having a cross-sectional dimension (diameter) greater than the mating pin.

coaxial cable A transmission line consisting of two conductors concentric with and insulated from each other. In its flexible form it consists of either a solid or stranded center conductor surrounded by a dielectric. A braid is then woven over the dielectric to form an outer conductor. A weatherproof plastic covering, usually vinyl, is placed on top of the braid.

contact durability The number of insertion and withdrawal cycles that a connector must be capable of withstanding while remaining within the performance levels of the applicable specification.

contact engaging and separating force Force required to either engage or separate contacts. Values are generally established for maximum and minimum forces.

contact inspection hole A hole, perpendicular to the cylindrical rear portion of screw machined contacts, used to check the depth to which wire has been inserted into the barrel.

contact resistance Measurement of electrical resistance of mated contacts when assembled in a connector under typical service use. Electrical resistance is determined by measuring from the rear of the electrical area of one contact to the rear of the contact area of the mating contact (excluding both crimps) while carrying a specified test current.

contact, two-piece A contact made of two separate parts joined by swedging, brazing or other means of fastening to form a single contact. While this provides the mechanical advantages of two metals, it also has the inherent electrical disadvantage of difference in conductivity.

corona A discharge of electricity appearing as a bluish-purple glow on the surface of, and adjacent to, a conductor when the voltage gradient exceeds a certain critical value. It is caused by the ionization of surrounding air by high voltage.

crimp The final configuration of a terminal barrel after the necessary compression forces have been applied to cause a functional union between the terminal barrel and the wire.

crimp height A top to bottom measurement of the crimped barrel, using a crimp height comparator in the prescribed manner. (Refer to AMP Instruction Sheet 7424).

crimping dies A term used to identify the shaping tools that, when moved toward each other, produce a certain desirable shape to the barrel of the terminal or contact that has been placed between them. Crimping dies are often referred to as die sets or as die inserts.

crimping head Tooling containing jaws and linkage for use in pneumatic or hydraulic powered units to crimp loose-piece contacts/terminals that may be too large for hand tool applications.

crimping tool A term commonly used to identify a hand held mechanical device that is used to crimp a contact, terminal or splice.

crosstalk A magnetic or electrostatic coupling which causes the unwanted transfer of energy from one circuit (disturbing circuit) to another circuit (disturbed circuit)

current rating The maximum continuous electrical flow of current recommended for a given situation. It is expressed in amperes.

cycle One complete sequence of values of an alternating quantity, including a rise to maximum in one direction and return to zero; a rise to maximum in the opposite direction and return to zero. The number of cycles occurring in one second is called the frequency.

D

dB Abbreviation — see decibel.

D.C. sparkover voltage defined as the maximum voltage across a device before it discharges the energy to ground when subjected to a slowly rising voltage ramp. A rate of rise of 100V/s is usually chosen for testing purposes.

decibel A unit expressing the ratio of two voltages, currents or powers. It is equal to 20 times the common logarithm of the ratio of two voltages across or two currents through equal loads, or 10 times the common logarithm of the two powers. One decibel is approximately the smallest change in audible power that can be recognized by the human ear.

Dimensions are in inches and millimeters unless otherwise specified. Values in brackets are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change. Technical Support — Refer to inside back cover.

Appendix E - Glossary of Terms (Continued)

die closure Term used to designate a crimping area (crimping chamber) when the dies are fully closed or bottomed. Die closure is checked with go/no go plug gage to insure that the crimp produced by the tooling satisfies the crimp height specification.

dielectric A material that serves as an insulator. The amount of resistance to voltage in a given insulation.

dielectric withstanding voltage The maximum potential gradient that a dielectric material can withstand without failure.

discontinuity Rated interconnection: a broken connection (open circuit) or the loss of a specified connection characteristic. Transient phenomena: Short term (temporary) interruption or unacceptable variation in current or voltage.

dissipation Unusable or lost energy, such as the production of unused heat in a circuit.

distortion An unwanted change or addition to a signal or waveform when it is amplified. This definition excludes noise which is an extraneous signal superimposed on the desired signal.

dummy load A dissipative device used at the end of a transmission line or waveguide to convert transmitted energy into heat, so essentially no energy is radiated outward or reflected back to its source.

Ε

electromagnetic compatibility (EMC) The ability of an electronic device to operate in its intended environment without its performance being affected by EMI and without generating EMI that will affect other equipment. electromagnetic interference (EMI) Unwanted electrical or electro-

magnetic energy that causes undesirable responses, degrading performance or complete malfunctions in electronic equipment. See also: noise.

electromotive force (emf) See voltage.

environmentally sealed A unit is provided with gaskets, seals, grommets, potting or other means to keep out moisture, dust, air or dirt which might reduce or impair its performance.

F

feedthrough A connector or terminal block, usually having double-ended terminals, which permits distribution and bussing of electrical circuits. Also used to describe a bushing in a wall or bulkhead, separating compartments at different pressure levels, with terminations on both sides.

ferrule A short tube used to make solderless connections to shielded or coaxial cable. Also molded into the plastic inserts of multiple contact connectors to provide strong, wear-resistant shoulders on which contact retaining springs can bear.

frequency modulation (fm) A scheme for modulating a carrier frequency in which the amplitude remains constant but the carrier frequency is displaced in frequency proportionally to the amplitude of the modulating signal. An fm broadcast is practically immune to atmospheric and man-made interference.

fretting corrosion A form of excellerated oxidation that appears at the interface of contacting materials undergoing slight cyclic relative motion. All non-nobel metals (tin) are susceptible to some degree of fretting corrosion and will suffer contact resistance increases.

front mounted A connector is said to be front mounted when it is attached to the outside of the mating side of a panel. A front mounted connector can only be installed or removed from the outside of the equipment.

G

giga A prefix meaning one billion (10⁹).

gigahertz (GHz) One billion cycles per second (10⁹ cps). **ground** A connection, intentional or accidental, between an electrical circuit and the earth or some conducting body (e.g. chassis) serving in place of earth.

Н

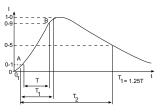
heat-shrinkable A type of plastic material that has been cross-linked. A term describing tubes, sleeves, caps, boots, films or other forms of plastic which shrink to encapsulate, protect or insulate connections, splices, terminations and other configurations.

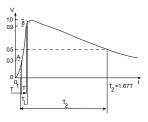
hermetic Airtight, impervious to external influence, as in a hermetic package. Often used to describe metal-to-metal solder or weld-sealed packages. **hermetic seal** Hermetically sealed connectors are usually multiple contact connectors where the contacts are bonded to the connector by glass or other materials and permits maximum leakage rate of gas through the connector of 1.0 micron ft./hr. at one atmosphere pressure for special applications.

hertz (Hz) International standard term for cycles per second. Named after the German physicist Heinrich R. Hertz (e.g., 60 cycles per second is equal to 60 hertz or 60 Hz).

I

impedance (Z) The total opposition offered by a component or circuit to the flow of alternating or varying current. Impedance is expressed in ohms and is similar to the actual resistance in a direct current circuit. In computations, impedance is handled as a complex ratio of voltage to current.


impedance match A condition in which the impedance of a component or circuit is equal to the internal impedance of the source, or the surge impedance of a transmission line. This gives maximum transfer of energy from the source to the load, as well as minimum reflection and distortion.


impulse discharge current

is defined as the peak current of an impulse which the device can withstand ten times (5 of each polarity at fixed time intervals) without substantially affecting device performance. The test normally used to determine this capacity uses the 8/20ms waveform as depicted below where T1=8ms and T2=20ms.

impulse sparkover voltage

defined as the maximum level of voltage across a device before it discharges the energy to ground when subjected to a voltage impulse. The three common waveform profiles used to determine this capacity are:

inductance One cause of reactance. An electromagnetic phenomenon in which the expanding and collapsing of a magnetic field surrounding a conductor or device tends to impede changes in current. The effects of inductance become greater as frequencies increase. The basic unit for inductance is the henry.

Products for Aerospace and Defense Applications Dimensions are in inches and millimeters unless otherwise specified. Values in brackets are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change. Technical Support — Refer to inside back cover. 471

Appendix E - Glossary of Terms (Continued)

input impedance The impedance that exists between the input terminals of an amplifier or transmission line when the source is disconnected. The circuit, signal level and frequency must be specified.

insertion loss The loss in load power due to the insertion of a component, connector or device at some point in a transmission system. Generally expressed in decibels as the ratio of the power received at the load before insertion of the apparatus, to the power received at the load after insertion.

insulation crimp The area of a terminal splice or contact that has been formed around the insulation of a wire.

insulation grip The ability of certain crimped terminals to hold firmly in place both the conductor and a small portion of insulation. This prevents the conductor from being exposed due to insulation receding away from the terminal.

insulation resistance The electrical resistance between two conductors separated by an insulating material.

interface The two surfaces of a multiple-contact connector that face each other when the connector is assembled.

interference An electrical or electromagnetic disturbance that causes undesirable response in electronic equipment.

J

jack A connecting device into which a plug can be inserted to make circuit connections. The jack may also have contacts which open or close to perform switching functions when the plug is inserted or removed. See also: receptacle.

L

line impedance Impedance as measured across the terminals of a transmission line; frequently the characteristic impedance of the line.

Μ

matched impedance The coupling of two circuits in such a way that the impedance of one circuit equals the impedance of the other.

mate Two join two connectors in a normal engaging mode.

maximum discharge current defined as the peak current of an impulse which the device can withstand once without substantially affecting device performance.

mega (M) A prefix meaning one million (10⁶).

Military Specification Military requirements. The demand imposed upon a system to meet a military operational need.

mismatch The condition in which the impedance of a source does not match or equal the impedance of the connected load. This reduces power transfer by causing reflection.

Ν

narrow-band EMI generated from a device operating at a specific and limited range of frequencies. See also: electromagnetic interference (EMI).

N Connector A large radio frequency connector covered by Military Specification. It has an impedance of 50 ohms and is designed to operate in the 0 to 11 GHz frequency range. It has a threaded coupling and is physically larger than a TNC connector. **noise** An extraneous signal in an electrical circuit, capable of interfering with the desired signal. Classes of noise include burst of popcorn noise, intermediate frequency noise at low audio frequencies, white (thermal) noise, etc. Signals from power supply or ground line coupled into an amplifier output may be considered noise.

0

"O" crimp An insulation support crimp for open barrel terminals and contacts. In its crimped form it resembles an "O" and conforms to the shape of the round wire insulation. "O" crimp is also used to describe the circumferential crimps used on COAXICON ferrules.

ohm The unit of measurement for electrical resistance. A circuit is said to have a resistance of one ohm when an applied emf of one volt causes a current of one ampere to flow.

Ρ

panel mount A method of fixing a connector to a board, panel or frame. The mounted connector is usually the receptacle or female connector. The plug or male connector is usually the removable portion.

permeability (chemical) The passage or diffusion (or rate of passage) of a gas, vapor, liquid or solid through a barrier without physically or chemically affecting it.

permeability (magnetic) The measure of how much better a material is than air as a path for magnetic lines of force. Air is assumed to have a permeability of 1.

plug In coaxial RF connectors the plug is usually the movable portion, and is usually attached to a cable or removable assembly. Plugs mate with receptacles, jacks, outlets, etc.

printed circuit board (pcb) An insulating board serving as a base for a printed circuit. When the printing process is completed, the board may include printed components, as well as printed wiring.

propagation delay Time required for an electronic digital device, or transmission network to transfer information from its input to its output.

propagation delay time The time between the application of a digital input waveform and the corresponding change in input waveform. It is measured between reference points on the waveforms. The time is generally different for positive-going and negative-going waveforms.

pulse A change in the level, over a relatively short period of time, of a signal whose value is normally constant.

pulse width The length of time that the pulse voltage is at the transient level. Electronic pulse widths are usually in the millisecond (10^{-3}) , microsecond (10^{-6}) or nanosecond (10^{-9}) range.

R

receptacle In coaxial RF connectors, the receptacle is usually the fixed or stationary portion that is mounted to the panel. In shell-type, multiplecontact connectors the receptacle usually contains the pin contacts and is mounted on the "cold" side of a circuit such as in a drawer or black box. Receptacles mate with plugs. See also: jack.

residual impulse defined as the voltage that will pass through the device prior to activation of the GDT.

residual voltage defined as the small amount of voltage left on the line after an impulse passes.

resonance A frequency at which captive reactance and inductive reactance are equal and therefore cancel one another's effects.

472

Products for Aerospace and Defense Applications Dimensions are in inches and millimeters unless otherwise specified. Values in brackets are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change. Technical Support — Refer to inside back cover

Appendix E - Glossary of Terms (Continued)

RF Abbreviation for radio frequency.

RG/U Symbol used to designate coaxial cables that are made to Government Specification (e.g., RG-58U; in this designation the "R" means radio frequency, the "G" means Government, the "58" is the number assigned to the government approval, and the "U" means it is a universal specification).

rise time The time required for a component or logic circuit to change from the quiescent to the transient state when an input is applied. (i.e. elapsed time between application of input and attainment of full output level).

root mean square (rms) The effective value of an alternating current, corresponding to the direct current value that will produce the same heating effect.

S

semi-rigid A cable containing a flexible inner core and a relatively inflexible sheathing.

sheath The outer covering of a jacket over the insulated conductors to provide mechanical protection for the conductors. Also known as the external conduction surface of a shielded transmission line.

shield/shielding (cable) A conducting envelope, composed of metal strands, which enclose a wire, group of wires or cable so constructed that substantially every point on the surface of the underlying insulation is at ground potential or at some predetermined potential with respect to ground.

shield/shielding (circuit) The metal sleeving surrounding one or more of the conductors in a wire circuit to prevent interference, interaction or current leakage. Shielding protects a circuit against crosstalk.

shock (mechanical) (1) An abrupt impact applied to a stationary object. (2) An abrupt or nonperiodic change in position, characterized by suddenness, and by the development of substantial internal forces.

SHV Abbreviation for standard high voltage.

sine wave A wave which can be expressed as the sine of a linear function of time, space or both. A waveform, often viewed on an oscilloscope, of a pure alternating current or voltage.

skin effect The tendency of alternating currents to flow near the surface of the conductor, thus being restricted to a small part of the total cross-sectional area. This effect increases the resistance and becomes more marked as the frequency rises.

sleeve The insulated or metallic covering over the barrel of a terminal.

solder contact A contact or terminal having a cup, hollow cylinder, eyelet or hook to accept a wire for a conventional soldered termination.

standard high voltage (SHV) A quick connect/disconnect connector series employing a bayonet lock coupling and designated to operate safely up to 5000 volts AC. It is the industry standard connector specified by the National Bureau of Standards (NBS) for high voltage use by the Atomic Energy Commission (AEC).

standing-wave Distribution of current and voltage on a transmission line, resulting from two sets of waves traveling in opposite directions.

standing wave ratio The ratio between maximum and minimum current or voltage along a line. It is a measure of the mismatch between the load and the line. It is equal to 1 when the line impedance is perfectly matched to the load. (In which case the maximum and minimum are the same, as current and voltage do not vary along the line). The perfect match would be a 1 to 1 ratio.

super high frequency (shf) The Federal Communications Commission designation for the band from 3,000 to 30,000 MHz in the radio spectrum.

Т

tensile The amount of axial load (longitudinal stress) required to break or pull the wire from the crimped barrel of the terminal, splice or contact.

tensile strength The greatest longitudinal stress that a substance or union can bear without tearing or pulling apart. In crimped terminations, it is the greatest longitudinal stress that a terminal can bear without the wire separating from the terminal.

thermal shock The effect of heat or cold applied at such a rate that nonuniform thermal expansion or contraction occurs within a given material or combination materials. The effect can cause inserts and other insulation materials to pull away from metal parts.

time-delay A circuit that delays the transmission of an impulse for a definite and desired period of time.

TNC Connector A radio frequency connector covered by Military Specification. It has an impedance of 50 ohms and is designed to operate in a 0 to 11 GHz frequency range. Reliability is assured by a threaded coupling that can be safely wired to prevent accidental disconnect.

U

UG Symbol used to describe coaxial connectors that were made to a Government specification. This specification is now obsolete.

ultra-high frequency (uhf) A Federal Communications Commission designation for the band from 300 to 3000 MHz on the radio spectrum. In television — channels 14 to 83 or 470 to 890 MHz.

۷

very high frequency (vhf) A Federal Communications Commission designation for the band from 30 to 300 MHz on the radio spectrum. **voice-frequency (vf)** Any frequency within that part of the radio frequen-

cy range essential to speech transmission of a commercial quality (i.e., 300 to 3400 Hz). Also referred to as telephone frequency.

volt (V) The unit of measurement for electromotive force (emf). It is equivalent to the force required to produce 1 ampere through a resistance of 1 ohm.voltage (E) The term most often used to designate electrical pressure that

exists between two points and is capable of producing a flow of current when a closed circuit is connected between the two points. Voltage is measured in volts, millivolts, microvolts and kilovolts. The terms electromotive force (emf), potential, potential difference and voltage drop are often referred to as voltage. **voltage drop** The voltage developed across a component or conductor by the flow of current through the resistance or impedance of that component or conductor.

voltage hold over refers to the maximum line voltage at which recovery of the GDT to its inactive state will take place within a specified period of time (normally 150ms) after an induced lightning pulse (normally 10/1000ms) has been applied.

VSWR Abbreviation for voltage standing wave ratio. Also see: standing wave ratio.

W

wavelength The distance between two points which are in phase on adjacent waves. It is the distance traveled by the wave in the same span of one cycle. Electromagnetic waves (both light and radio) have a speed in space of about 300,000,000 meters (186,000 miles) per second. Thus wavelength in meters is equal to 300,000,000 divided by frequency.

Ζ

Z Letter symbol used to represent impedance in ohms.

Products for Aerospace and Defense Applications

Dimensions are in inches and millimeters unless otherwise specified. Values in brackets are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change. Technical Support — Refer to inside back cover. 473

Cross Reference

Military Part Number	M/A-COM Part Number	Tyco Part Number	Military Part Number	M/A-COM Part Number	Tyco Part Numbe
M39012/01B0012		225092-7	M39012/55B3015	2031-8015-92	1051769-1
M39012/01B0013		51692-4	M39012/55B3016	2031-8016-92	1051770-1
M39012/01B007		225092-2	M39012/55B3017	2031-8017-92	1484541-1
M39012/01B008		225092-1	M39012/55B3018	2031-8018-92	1051771-1
M39012/02B008		225093-2	M39012/55B3019		225532-4
M39012/03B0004		225094-2	M39012/55B3019	2031-8019-92	1056413-1
M39012/03B0005		225094-1	M39012/55B3020	2031-8020-92	1051774-1
M39012/05B0002		225014-2	M39012/55B3021		225532-1
M39012/05B0002		225389-2	M39012/55B3021	2031-8021-92	1051775-1
M39012/05B0003		225014-3	M39012/55B3022		225532-3
M39012/16B0004		2-331350-1	M39012/55B3022	2031-8022-92	1051776-1
M39012/16B0007		2-331350-9	M39012/55B3023		1-225532-0
M39012/16B0008		331350	M39012/55B3023	2031-8023-92	1051777-1
M39012/17B0004		2-331351-1	M39012/55B3024		225532-9
M39012/17B0008		331351	M39012/55B3024	2031-8024-92	1051778-1
M39012/19-0102		221313-2	M39012/55B3111	2031-8111-92	1051796-1
M39012/19B0003		1-331693-1	M39012/55B3112	2031-8112-92	1051797-1
M39012/19B0007		331693	M39012/55B3113	2031-8113-92	1051798-1
M39012/26B0005		225550-2	M39012/55B3114	2031-8114-92	1051799-1
M39012/26B0006		225550-6	M39012/55B3115	2031-8115-92	1051800-1
M39012/26B0007		225550-3	M39012/55B3116	2031-8116-92	1051801-1
M39012/26B0016		225550-1	M39012/55B3117	2031-8117-92	1051802-1
M39012/27B0005		225551-2	M39012/55B3118	2031-8118-92	1051803-1
M39012/27B0006		225551-6	M39012/55B3119	2031-8119-92	1051804-1
M39012/27B0015		225551-5	M39012/55B3120	2031-8120-92	1051805-1
M39012/27B0016		225551-1	M39012/55B3121	2031-8121-92	1051806-1
M39012/29B0005		225348-2	M39012/55B3122	2031-8122-92	1051807-1
M39012/55-3006	2031-8006-92	1051757-1	M39012/55B3123	2031-8123-92	1051808-1
M39012/55-3007	2031-8007-92	1051759-1	M39012/55B3124	2031-8124-92	1051809-1
M39012/55-3008	2031-8008-92	1051760-1	M39012/56-3006	2037-8006-92	1052149-1
M39012/55-3009	2031-8009-92	1051762-1	M39012/56-3007	2037-8007-92	1052151-1
M39012/55-3010	2031-8010-92	1051763-1	M39012/56-3008	2037-8008-92	1052152-1
M39012/55-3025	2031-8025-92	1051780-1	M39012/56-3009	2037-8009-92	1052154-1
M39012/55-3026	2031-8026-92	1051782-1	M39012/56-3010	2037-8010-92	1052155-1
M39012/55-3027	2031-8027-92	1051783-1	M39012/56-3025	2037-8025-92	1052171-1
M39012/55-3028	2031-8028-92	1051785-1	M39012/56-3026	2037-8026-92	1052173-1
M39012/55-3029	2031-8029-92	1051787-1	M39012/56-3027	2037-8027-92	1052174-1
M39012/55-3106	2031-8106-92	1051789-1	M39012/56-3028	2037-8028-92	1052176-1
M39012/55-3107	2031-8107-92	1051791-1	M39012/56-3029	2037-8029-92	1052177-1
M39012/55-3108	2031-8108-92	1051792-1	M39012/56-3106	2037-8106-92	1052179-1
M39012/55-3109	2031-8109-92	1051794-1	M39012/56-3107	2037-8107-92	1052181-1
M39012/55-3110	2031-8110-92	1051795-1	M39012/56-3108	2037-8108-92	1052182-1
M39012/55-3125	2031-8125-92	1051810-1	M39012/56-3109	2037-8109-92	1052184-1
M39012/55-3126	2031-8126-92	1051812-1	M39012/56-3110	2037-8110-92	1052185-1
M39012/55-3127	2031-8127-92	1051813-1	M39012/56-3125	2037-8125-92	1052201-1
M39012/55-3128	2031-8128-92	1051815-1	M39012/56-3126	2037-8126-92	1052203-1
M39012/55-3129	2031-8129-92	1051816-1	M39012/56-3127	2037-8127-92	1052204-1
M39012/55-3502	2031-8052-92	1051788-1	M39012/56-3128	2037-8128-92	1052206-1
M39012/55-3602	2031-8162-92	1051817-1	M39012/56-3129	2037-8129-92	1052207-1
M39012/55-4026		1532129-5	M39012/56-3502	2037-8052-92	1052178-1
M39012/55-4027		1532129-7	M39012/56-3602	2037-8162-92	1086723-1
M39012/55-4028		1532129-9	M39012/56B3011	2037-8011-92	1052156-1
M39012/55-4029		1-1532129-1	M39012/56B3012	2037-8012-92	1052157-1
M39012/55-4126		1532129-6	M39012/56B3013	2037-8013-92	1052158-1
M39012/55-4127		1532129-8	M39012/56B3014	2037-8013-92	1052159-1
M39012/55-4128		1-1532129-0	M39012/56B3015	2037-8015-92	1052160-1
M39012/55-4129		1-1532129-0	M39012/56B3016	2037-8015-92	1052160-1
M39012/55B3011	2031-8011-92	1051764-1	M39012/56B3017	2037-8017-92	1052161-1
M39012/55B3012	2031-8012-92	1051766-1	M39012/56B3018 M39012/56B3019	2037-8018-92	1052163-1
M39012/55B3013	2031-8013-92	1051767-1	M39012/56B3019	2027 2040 02	225609-4
M39012/55B3014	2031-8014-92	1051768-1	M39012/56B3019	2037-8019-92	1052165-1

^{474 🗖}

Products for Aerospace and Defense Applications

Dimensions are in inches and millimeters unless otherwise specified. Values in brackets are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change. Technical Support — Refer to inside back cover.

Catalog 1308940 Issued 4-02

Cross Reference (Continued)

Military Part Number	M/A-COM Part Number	Tyco Part Number	Military Part Number	M/A-COM Part Number	Tyco Part Numb
M39012/56B3020	2037-8020-92	1052166-1	M39012/58B3015	2036-8015-92	1052043-1
M39012/56B3021		225609-1	M39012/58B3016	2036-8016-92	1484501-1
M39012/56B3021	2037-8021-92	1052167-1	M39012/58B3017	2036-8017-92	1484502-1
M39012/56B3022	2001 0021 02	225609-3	M39012/58B3018	2036-8018-92	1052044-1
M39012/56B3022	2037-8022-92	1052168-1	M39012/58B3019	2036-8019-92	1484503-1
M39012/56B3023	2037-8023-92	1052169-1	M39012/58B3020	2036-8020-92	1484504-1
M39012/56B3023	2037-8023-92	1052170-1		2036-8021-92	
			M39012/58B3021		1484505-1
M39012/56B3111	2037-8111-92	1052186-1	M39012/58B3022	2036-8022-92	1052045-1
M39012/56B3112	2037-8112-92	1052187-1	M39012/58B3023	2036-8023-92	1484506-1
M39012/56B3113	2037-8113-92	1052188-1	M39012/58B3024	2036-8024-92	1484507-1
M39012/56B3114	2037-8114-92	1052189-1	M39012/59-3006	2034-8006-92	1051981-1
M39012/56B3115	2037-8115-92	1052190-1	M39012/59-3007	2034-8007-92	1051982-1
M39012/56B3116	2037-8116-92	1052191-1	M39012/59-3008	2034-8008-90	1051983-1
M39012/56B3117	2037-8117-92	1052192-1	M39012/59-3009	2034-8009-90	1051984-1
M39012/56B3118	2037-8118-92	1052193-1	M39012/59-3010	2034-8010-90	1051985-1
M39012/56B3119	2037-8119-92	1052194-1	M39012/59-3025	2034-8025-92	1051992-1
M39012/56B3120	2037-8120-92	1052195-1	M39012/59-3026	2034-8026-92	1051994-1
M39012/56B3121	2037-8121-92	1052196-1	M39012/59-3027	2034-8027-92	1051995-1
M39012/56B3122	2037-8122-92	1052197-1	M39012/59-3028	2034-8028-92	1051996-1
W39012/56B3123	2037-8123-92	1052198-1	M39012/59-3029	2034-8029-92	1051997-1
M39012/56B3124	2037-8124-92	1052199-1	M39012/59-3502	2034-8052-92	1051999-1
M39012/57-3006	2032-8006-92	1090174-1	M39012/59-4026	2001.0002.02	1-1532129-3
M39012/57-3007	2032-8007-92	1051900-1	M39012/59-4027		1-1532129-4
M39012/57-3008	2032-8008-90	1051900-1	M39012/59-4027		1-1532129-5
M39012/57-3009	2032-8008-90		M39012/59-4028		
		1051902-1		0004 0044 00	1-1532129-6
M39012/57-3010	2032-8010-90	1051903-1	M39012/59B3011	2034-8011-92	1362216-1
M39012/57-3025	2032-8025-92	1051918-1	M39012/59B3012	2034-8012-92	1051986-1
M39012/57-3026	2032-8026-92	1051919-1	M39012/59B3013	2034-8013-92	1083993-1
M39012/57-3027	2032-8027-92	1051920-1	M39012/59B3014	2034-8014-92	1331293-1
M39012/57-3028	2032-8028-92	1051921-1	M39012/59B3015	2034-8015-92	1253627-1
M39012/57-3029	2032-8029-92	1051922-1	M39012/59B3016	2034-8016-92	1221165-1
M39012/57-3502	2032-8052-92	1051923-1	M39012/59B3017	2034-8017-92	1484542-1
M39012/57B3011	2032-8011-92	1051904-1	M39012/59B3018	2034-8018-92	1051987-1
M39012/57B3012	2032-8012-92	1051905-1	M39012/59B3019	2034-8019-92	1051988-1
M39012/57B3013	2032-8013-92	1051906-1	M39012/59B3020	2034-8020-92	1484543-1
M39012/57B3014	2032-8014-92	1051907-1	M39012/59B3021	2034-8021-92	1087842-1
M39012/57B3015	2032-8015-92	1051908-1	M39012/59B3022	2034-8022-92	1051989-1
M39012/57B3016	2032-8016-92	1051909-1	M39012/59B3023	2034-8023-92	1051990-1
M39012/57B3017	2032-8017-92	1051910-1	M39012/59B3024	2034-8024-92	1051991-1
M39012/57B3018	2032-8018-92	1051911-1	M39012/60-3001	2052-8001-92	1052924-1
M39012/57B3019	2032-8019-92	1051912-1	M39012/60-3002	2052-8002-92	1052926-1
M39012/57B3020	2032-8020-92	1051913-1	M39012/61-3001	2056-8011-92	1053118-1
M39012/57B3021	2032-8021-92	1051914-1	M39012/61-3002	2058-8012-92	1484516-1
M39012/57B3022	2032-8022-92	1051915-1	M39012/79-3007	2001-8007-92	1050781-1
M39012/57B3023	2032-8023-92	1051916-1	M39012/79-3008	2001-8008-92	1050783-1
M39012/57B3024	2032-8024-92	1051917-1	M39012/79-3107	2001-8107-92	1050789-1
M39012/58-3006	2036-8006-92	1052037-1	M39012/79-3108	2001-8108-92	1050790-1
M39012/58-3007	2036-8007-92	1052038-1	M39012/79-3207		228639-3
M39012/58-3008	2036-8008-90	1052039-1	M39012/79-3207	2001-8207-92	1050793-1
M39012/58-3009	2036-8009-90	1052040-1	M39012/79-3208	2001-8208-92	1050794-1
M39012/58-3010	2036-8010-90	1052041-1	M39012/79-3307		228639-1
M39012/58-3025	2036-8025-92	1052046-1	M39012/79-3307	2001-8307-92	1050800-1
V39012/58-3026	2036-8026-92	1052047-1	M39012/79-3308		228634-1
M39012/58-3027	2036-8027-92	1052048-1	M39012/79-3308	2001-8308-92	1050801-1
M39012/58-3028	2036-8028-92	1052049-1	M39012/79-3311	2001-8308-92	1050803-1
M39012/58-3029	2036-8029-92	1052050-1	M39012/79B3001	2001-8001-92	1050774-1
M39012/58-3502	2036-8052-92	1052051-1	M39012/79B3002	2001-8002-92	1058590-1
M39012/58B3011	2036-8011-92	1052042-1	M39012/79B3002	2001-8002-92	1050776-1
M39012/58B3012	2036-8012-92	1254028-1	M39012/79B3003	2001-8003-92	1050777-1
M39012/58B3013	2036-8013-92	1484499-1	M39012/79B3003	2001-8991-92	1050813-1
M39012/58B3014	2036-8014-92	1484500-1	M39012/79B3003	2001-8203-92	1089686-1

Products for Aerospace and Defense Applications

Dimensions are in inches and millimeters unless otherwise specified. Values in brackets are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change. Technical Support — Refer to inside back cover.

Cross Reference (Continued)

Military Part Number	M/A-COM Part Number	Tyco Part Number	Military Part Number	M/A-COM Part Number	Tyco Part Numbe
M39012/79B3004	2001-8004-92	1050779-1	M39012/83-3208	2004-8208-92	1051033-1
M39012/79B3004	2001-8204-92	1050792-1	M39012/83B3001	2004-8001-90	1051022-1
M39012/79B3101	2001-8101-92	1050785-1	M39012/83B3002	2004-8002-90	1051023-1
M39012/79B3102	2001-8102-92	1050786-1	M39012/83B3003	2004-8003-92	1051024-1
M39012/79B3103		227868-1	M39012/83B3003	2004-8203-92	1051030-1
M39012/79B3103	2001-8103-92	1050787-1	M39012/83B3004	2004-8004-92	1051025-1
M39012/79B3103	2001-8303-92	1050797-1	M39012/83B3004	2004-8204-92	1051031-1
M39012/79B3103	2001-8981-92	1050812-1	M39012/92-3201	2001-8201-92	1050791-1
M39012/79B3104		227743-1	M39012/92-3301		228635-1
W39012/79B3104	2001-8104-92	1050788-1	M39012/92-3301		228635-6
W39012/79B3104	2001-8304-92	1050799-1	M39012/92-3301	2001-8301-92	1050796-1
M39012/80-3005	2007-8005-92	1051165-1	M39012/92B3001	2001-8921-92	1050808-1
M39012/80-3006	2007-8006-92	1051166-1	M39012/92B3001	2001-8901-92	1050805-1
M39012/80-3007	2007-8007-92	1051168-1	M39012/92B3001	2001-8941-92	1484517-1
M39012/80-3008	2007-8008-92	1051170-1	M39012/92B3101	2001-0341-32	227531-1
M39012/80-3008	2007-8008-92	1051175-1	M39012/92B3101 M39012/92B3101	2001-8911-92	1050807-1
M39012/80-3105	2007-8105-92			2001-8931-92	1050809-1
		1051176-1	M39012/92B3101		
V139012/80-3107	2007-8107-92	1051177-1	M39012/92B3101	2001-8951-92	1050810-1
M39012/80-3108	2007-8108-92	1051178-1	M39012/93-3001	2062-8001-90	1053372-1
M39012/80-3207		228583-3	M39012/93-3002	2062-8002-90	1053374-1
M39012/80-3207		228583-5	M39012/93-3003	2062-8003-90	1053376-1
M39012/80-3307		228583-1	M39012/94-3001	2064-8001-90	1053396-1
M39012/80-3308		228626-1	M39012/94-3002	2064-8002-90	1053398-1
M39012/80-3308		228626-5	M39012/94-3003	2064-8003-90	1053400-1
M39012/80B3001	2007-8001-92	1051160-1	M55339/02-30001	2088-8001-92	1055091-1
M39012/80B3002	2007-8002-92	1051161-1	M55339/28-30001	2084-8001-92	1054986-1
VI39012/80B3003	2007-8003-92	1051163-1	M55339/28-30002	2084-8002-92	1054988-1
//39012/80B3004	2007-8004-92	1051164-1	M55339/29-30001	2081-8001-92	1053765-1
//39012/80B3101	2007-8101-92	1051171-1	M55339/29-30101	2081-8101-92	1053767-1
//39012/80B3102	2007-8102-92	1051172-1	M55339/31-30001	2081-8001-92	1053633-1
M39012/80B3103	2007-8103-92	1051173-1	M83517/1-31001	2052-8003-92	1052928-1
M39012/80B3104	2007-8104-92	1051174-1	M83517/1-31002	2052-8004-92	1052930-1
M39012/81-3005	2002-8005-90	1050926-1	M83517/1-31003	2052-8005-92	1052932-1
V39012/81-3006	2002-8006-90	1050928-1	M83517/1-31004	2052-8006-92	1052934-1
M39012/81-3007	2002-8007-92	1050929-1	M83517/1-32001	2052-8003-90	1052927-1
//39012/81-3008	2002-8008-92	1050931-1	M83517/1-32002	2052-8004-90	1052929-1
//39012/81-3207	2002-8207-92	1050934-1	M83517/1-32003	2052-8005-90	1052931-1
//39012/81-3208	2002-8208-92	1050935-1	M83517/1-32004	2052-8006-90	1052933-1
//39012/81B3001	2002-8001-90	1050923-1	M83517/2-31001	2051-8001-92	1052409-1
//39012/81B3002	2002-8002-90	1050924-1	M83517/2-31002	2051-8002-92	1052411-1
//39012/81B3003	2002-8003-92	1084643-1	M83517/2-31003	2051-8003-92	1052413-1
//39012/81B3003	2002-8203-92	1050932-1	M83517/2-31004	2051-8004-92	1052415-1
//39012/81B3003	2002-8203-92	1050925-1	M83517/2-32001	2051-8001-90	1052408-1
//39012/81B3004	2002-8004-92	1050923-1	M83517/2-32001 M83517/2-32002	2051-8002-90	1052408-1
	2002-8204-92		M83517/2-32002		
//39012/82-3005		1051091-1		2051-8003-90	1052412-1
//39012/82-3006	2006-8006-90	1051092-1	M83517/2-32004	2051-8004-90	1052414-1
//39012/82-3007	2006-8007-92	1051093-1	M83517/3-31001	2052-8007-92	1052936-1
M39012/82-3008	2006-8008-92	1051094-1	M83517/3-31002	2052-8008-92	1052938-1
//39012/82-3207	2006-8207-92	1051097-1	M83517/3-31003	2052-8009-92	1052940-1
//39012/82-3208	2006-8208-92	1051098-1	M83517/3-31004	2052-8010-92	1052942-1
//39012/82B3001	2006-8001-90	1051087-1	M83517/3-31005	2052-8011-92	1052944-1
//39012/82B3002	2006-8002-90	1051088-1	M83517/3-31006	2052-8012-92	1052946-1
//39012/82B3003	2006-8003-92	1051089-1	M83517/3-31007	2052-8013-92	1052948-1
M39012/82B3003	2006-8203-92	1051095-1	M83517/3-32001	2052-8007-90	1052935-1
M39012/82B3004	2006-8004-92	1051090-1	M83517/3-32002	2052-8008-90	1052937-1
M39012/82B3004	2006-8204-92	1051096-1	M83517/3-32003	2052-8009-90	1052939-1
M39012/83-3005	2004-8005-90	1051026-1	M83517/3-32004	2052-8010-90	1052941-1
//39012/83-3006	2004-8006-90	1051027-1	M83517/3-32005	2052-8011-90	1052943-1
M39012/83-3007	2004-8007-92	1051028-1	M83517/3-32006	2052-8012-90	1052945-1
//39012/83-3008	2004-8008-92	1051029-1	M83517/3-32007	2052-8013-90	1052947-1
VI39012/83-3207	2004-8207-92	1051032-1	M83517/4-31001	2052-8014-92	1052950-1

⁴⁷⁶

Products for Aerospace and Defense Applications

Dimensions are in inches and millimeters unless otherwise specified. Values in brackets are metric equivalents. Dimensions are shown for reference purposes only. Specifications subject to change. Technical Support — Refer to inside back cover.