

Ultra Low Phase Noise Amplifier 2 - 18 GHz

Rev. V1

Features

Wideband Performance

Noise Figure: 4 dB @ 8 GHz

Phase Noise: -154 dBc/Hz @ 1 kHz

Bias Voltage: 5 VBias Current: 60 mA

50 Ω Matched Input / Output

Positive Voltage Only

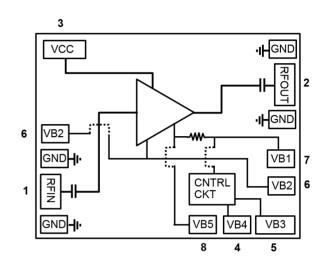
• Die Size: 2.8 x 1.73 x 0.1 mm

RoHS* Compliant

Description

The MAAL-011151-DIE is an easy to use, wideband low noise distributed amplifier die. It operates from 2 to 18 GHz and provides 17 dB of linear gain, 16 dBm of P1dB and 4 dB of noise figure at 8 GHz. The input and output are fully matched to 50 Ω with typical return loss >15 dB.

The RF input and RF output ports are DC blocked. Amplifier control is available through the use of a control circuit or by direct bias injection.


This product is fabricated using a low phase noise HBT process which features full passivation for enhanced reliability.

The MAAL-011151-DIE can be used as a low noise amplifier stage for signal generation applications. This device is ideally suited for Test and Measurement, EW, ECM, and Radar applications where ultra low phase noise and drive power is required.

Ordering Information

Part Number	Package
MAAL-011151-DIE	gel pack

Functional Schematic¹

1. Image not to scale.

Pin Configuration²

Pin#	Pin Name	Description	
1	RFIN	RF Input	
2	RFOUT	RF Output	
3	VCC	Collector Voltage	
4	VB4	Bias Voltage 4	
5	VB3	Bias Voltage 3	
6	VB2	Bias Voltage 2	
7	VB1	Bias Voltage 1	
8	VB5	Bias Voltage 5	

Backside of die must be connected to RF, DC and thermal ground.

1

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Ultra Low Phase Noise Amplifier 2 - 18 GHz

Rev. V1

Electrical Specifications: $T_A = +25$ °C, $VC = VCT^3 = 5 V$, $Z_0 = 50 \Omega$

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	P _{IN} = -15 dBm 2 GHz 10 GHz 18 GHz	dB	15.0 14.0 13.5	16.5 16.0 15.5	_
Output P3dB ⁴	2 GHz 10 GHz 18 GHz	dBm	_	23 19 14	_
Output Power	P_{IN} = +4.5 dBm, 2 GHz P_{IN} = +2.8 dBm, 10 GHz P_{IN} = -3.0 dBm, 18 GHz	dBm	18.0 15.0 9.0	20.0 17.5 11.5	_
Input Return Loss	$P_{IN} = -15 \text{ dBm}$	dB	_	10	_
Output Return Loss	P _{IN} = -15 dBm	dB	_	10	_
Noise Figure	2 GHz 10 GHz 18 GHz	dB	_	8 5 8	_
Isolation	P _{IN} = -15 dBm 2 GHz 10 GHz 18 GHz	dB	_	50 42 30	_
Phase Noise	P _{IN} = +3 dBm, 12 GHz 100 Hz 1 kHz 10 kHz 1 MHz	dBc/Hz	_	-144 -150 -156 -162	_
ICQ	-15 dBm P _{IN} , VC = 5 V	mA	_	60	_
ICT ³	Total current into R1, R2	mA	_	2	_

^{3.} Reference detailed bias conditions on pages 3-4.

^{4.} MACOM does not recommend sustained operation at power levels above 3 dB compression.

Ultra Low Phase Noise Amplifier 2 - 18 GHz

Rev. V1

Maximum Operating Conditions

Parameter	Rating
Input Power ⁴	$P_{IN} \le 3 \text{ dB}$ compression level
ICQ	90 mA
Junction Temperature ^{5,6}	+130°C
Operating Temperature	-40°C to +85°C

- Operating at nominal conditions with junction temperature ≤ 130°C will ensure MTTF > 1 x 10⁶ hours.
- 6. Junction Temperature (T_J) = T_C + Θ_{JC} * ((V * I) (P_{OUT} P_{IN})). Typical thermal resistance (Θ_{JC}) = 120°C/W.
 - a) For $T_C = +25$ °C
 - $T_{\rm J}$ = +72°C @ 5 V, 98 mA, $P_{\rm OUT}$ = 20 dBm, $P_{\rm IN}$ = 4.5 dBm b) For $T_{\rm C}\,$ = +85°C
 - $T_J = 129$ °C @ 5 V, 88 mA, $P_{OUT} = 19$ dBm, $P_{IN} = 4.5$ dBm

Handling Procedures

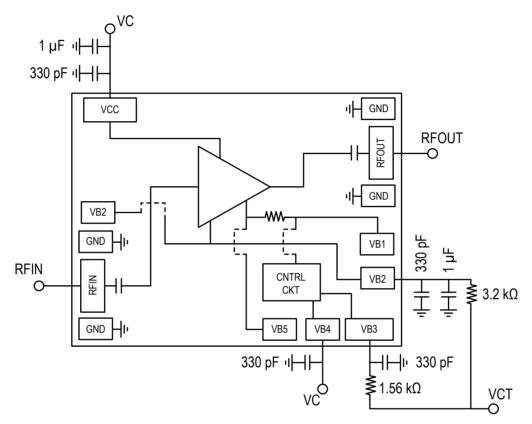
Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1A devices.

Absolute Maximum Ratings^{7,8}

Parameter	Absolute Maximum
Input Power	12 dBm
ICQ	120 mA
VCC	6 V
VB1, VB2, VB3, VB4, VB5	6 V
VB1, VB2, VB3, VB4, VB5 Current	5 mA
Junction Temperature ⁹	+150°C
Storage Temperature	-65°C to +125°C


- 7. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- Junction temperature directly effects device MTTF. Junction temperature should be kept as low as possible to maximize lifetime.

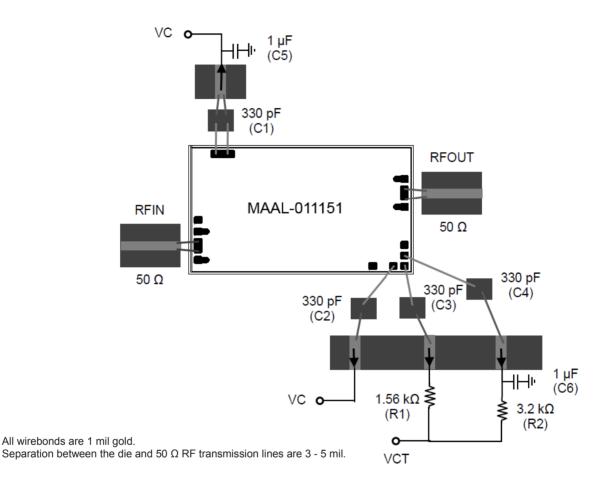
Ultra Low Phase Noise Amplifier 2 - 18 GHz

Rev. V1

Application Schematic

Operating Conditions

Recommended biasing conditions are VC = 5 V applied to the VB4 and VCC pads. Apply 5 V to the amplifier control VCT node through the offset resistors to VB2 and VB3 pads according to the application schematic as shown. Applying VCT = 5 V will turn the LNA on, which should draw 60 mA from VC. Applying VCT = 0 V will turn off the LNA. The VCT will draw <2 mA at 5 V. All DC supplies need to be low noise to prevent degradation of the amplifier phase noise.



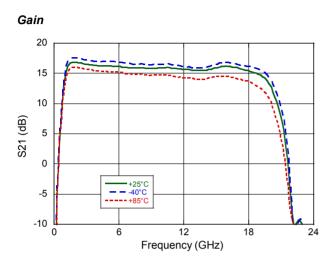
Ultra Low Phase Noise Amplifier 2 - 18 GHz

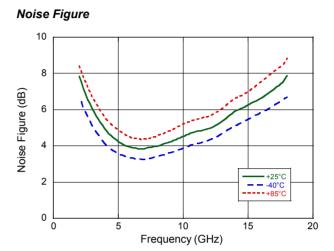
Rev. V1

Recommended Bonding Diagram & PCB Layout

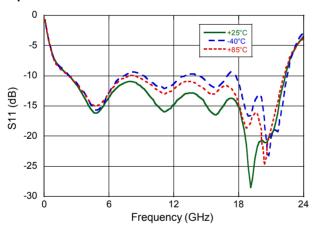
RF input and output port matching circuit patterns are designed to compensate for bonding wires. Input and output bonding configuration are identical.

Parts List

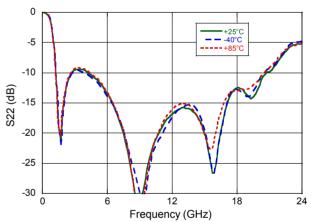

Part #	Value	Case Style
C1 - C4	330 pF	Single Layer
C5, C6	1 μF	0402
R1	1.56 kΩ	Thin film
R2	3.2 kΩ	Thin film

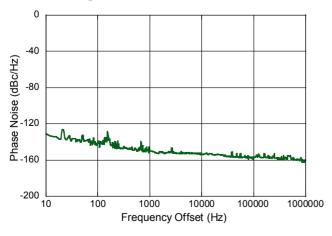


Ultra Low Phase Noise Amplifier 2 - 18 GHz


Rev. V1

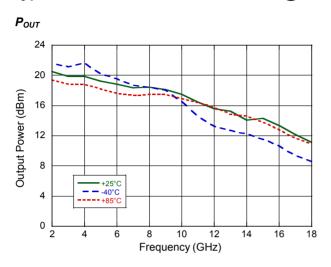
Typical Performance Curves: 5 V, ICQ = 60 mA

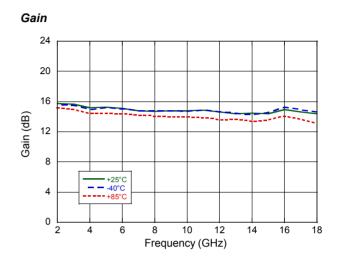



Input Return loss

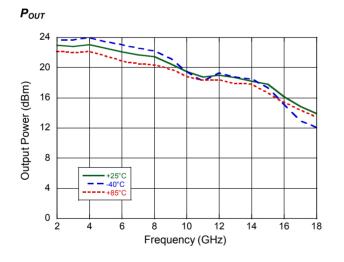
Output Return Loss

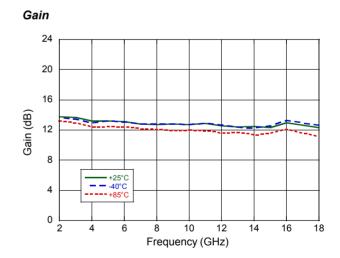
Phase Noise @ +25°C



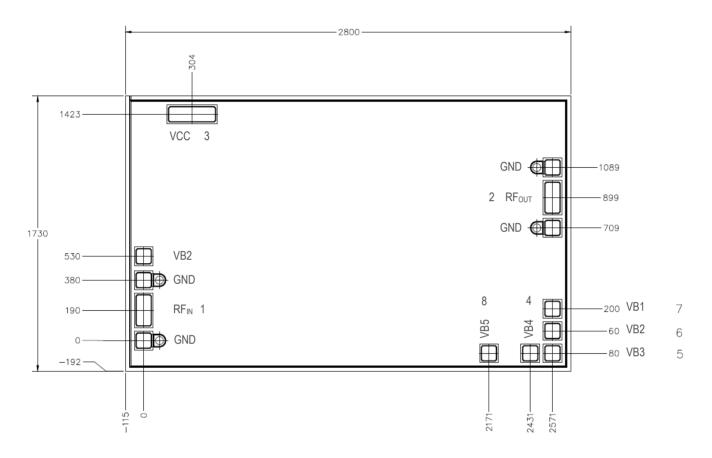


Ultra Low Phase Noise Amplifier 2 - 18 GHz


Rev. V1


Typical Performance Curves: P1dB @ ICQ = 60 mA

Typical Performance Curves: P3dB @ ICQ = 60 mA



Ultra Low Phase Noise Amplifier 2 - 18 GHz

Rev. V1

MMIC Die Outline

Bond Pad Detail 10,11

Pin#	Size (x)	Size (y)
1 - 2	100	200
3	300	100
4 - 8	100	100

^{10.} All dimensions shown as microns (μ m) with a tolerance of +/-5 μ m, unless otherwise noted.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1A devices.

^{11.} Die thickness is 100 μ m +/-10 μ m.