RF Driver Amplifier 250 - 4000 MHz

MAAM-009560

Rev. V2

Features

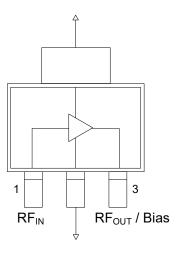
- Output Intercept Point of +42 dBm over a 20 dB Input Power Range
- Broadband Operation
- Lead-Free SOT-89 Package
- RoHS* Compliant
- · Class 2 ESD Rating

Applications

- ISM
- Wireless Networking & Communication

Description

The MAAM-009560 RF driver amplifier is a GaAs MMIC which exhibits exceptional linearity performance over a >20 dB dynamic range, as well as featuring high gain in a lead-free miniature SOT-89 surface mount plastic package. The device is biased with a single +5 volt supply and consumes 225 mA typically.


The MAAM-009560 is fabricated using an HBT process to realize low current and high linearity. The process features full passivation for increased performance and reliability.

Ordering Information^{1,2}

Part Number	Package
MAAM-009560-000000	Bulk Packaging
MAAM-009560-TR1000	1000 piece reel
MAAM-009560-TR3000	3000 piece reel
MAAM-009560-001SMB	Sample Board

- 1. Reference Application Note M513 for reel size information.
- 2. All sample boards include 5 loose parts.

Functional Schematic

Pin Configuration

Pin#	Function
1	RF Input
2	Ground
3	RF Output/Bias

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Rev. V2

Electrical Specifications: Freq. = 2140 MHz, $T_A = 25$ °C, $V_{CC} = +5$ V, $Z_0 = 50$ Ω

Parameter	Units	Min.	Тур.	Max.
Gain	dB	14	15	_
Noise Figure	dB	_	3	_
Input Return Loss	dB	_	15	_
Output Return Loss	dB	_	17	_
Output P1dB	dBm	_	28.5	_
Output IP3	dBm	40	42	_
Quiescent Current	mA	_	220	_
Current (P _{IN} = 0 dBm)	mA	_	225	325

Maximum Operating Conditions³

Parameter	Maximum Operating Conditions
Junction Temperature⁴	170 °C
RF Output Power	28 dBm
Operating Temperature	-40 °C to +85 °C

^{3.} These operating conditions will ensure MTTF > 1×10^6 hours.

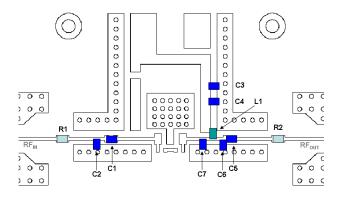
 $T_J = 73~^{\circ}C$ @ 5 V, 225 mA, P_{OUT} = 20 dBm, P_{IN} = 5.0 dBm b) For T_A = 85 $^{\circ}C$,

 T_J = 123 °C @ 5 V, 180 mA, P_{OUT} = 20 dBm, P_{IN} = 5.5 dBm

Absolute Maximum Ratings^{5,6}

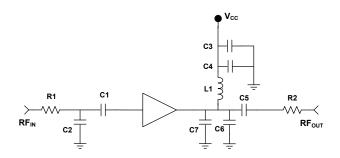
Parameter	Absolute Maximum
RF Output Power	29 dBm
Voltage	6 volts
Storage Temperature	-65 °C to +150 °C
Junction Temperature	210 °C

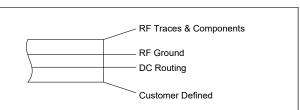
^{5.} Exceeding any one or combination of these limits may cause permanent damage to this device.


^{4.} Junction Temperature (T_J) = T_A + Θ jc * ((V * I) - (P_{OUT} - P_{IN})) Typical thermal resistance (Θ jc) = 47° C/W a) For T_A = 25°C,

MACOM does not recommend sustained operation near these survivability limits.

Rev. V2

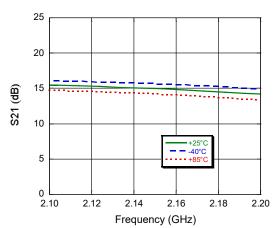

2140 MHz PCB Layout

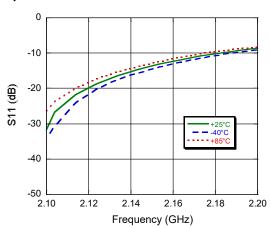

Parts List

Part	Value	Case Style
C1	1.8 pF	0402
C2	2.2 pF	0402
C3	0.1 μF	0402
C4	1000 pF	0402
C5	39 pF	0402
C6	1 pF	0402
C7	2 pF	0402
L1	3.6 nH	0402
R1, R2	0 Ω	0402

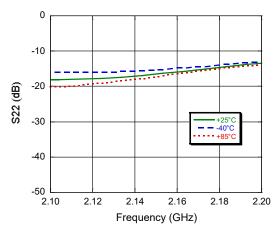
2140 Schematic

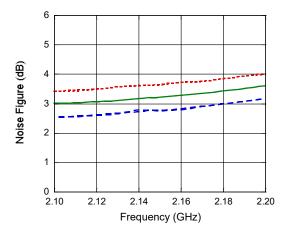
Cross Section View

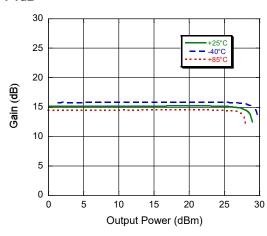

The PCB dielectric between RF traces and RF ground layers should be chosen to reduce RF discontinuities between 50 Ω lines and package pins. M/A-COM recommends an FR-4 dielectric thickness of 0.008" (0.20 mm) yielding a 50 Ω line width of 0.015" (0.38 mm). The recommended RF metalization is 1 ounce copper.

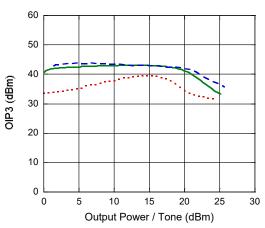

Rev. V2

Typical Performance Curves, 2140 MHz Configuration


Gain

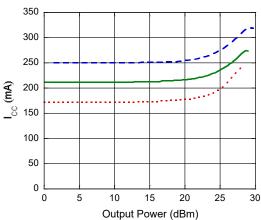

Input Return Loss


Output Return Loss


Noise Figure

P1dB

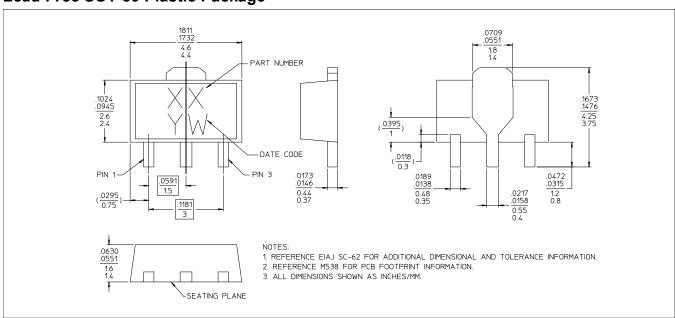
Output IP3


4

Rev. V2

Typical Performance Curves, 2140 MHz Configuration

Current


Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these class 2 devices.

Lead-Free SOT-89 Plastic Package[†]

[†] Reference Application Note M538 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Plating is 100% matte tin over copper.