Driver Amplifier 5 - 20 GHz

MAAM-011290

Rev. V3

Features

Gain: 20 dB

Saturated Power: 20 dBmOutput IP3: 32 dBm

High Reverse Isolation: 47 dB
50 Ω Matched Input and Output

• +5 V Supply @ 107 mA

• Integrated Capacitors on RF Input and Output

3 mm 12-Lead AQFN Package

RoHS* Compliant

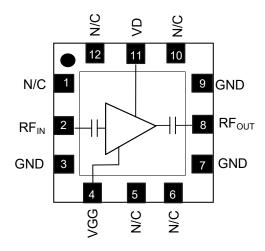
Applications

Microwave Radio

VSAT

Aerospace & Defense

Test & Measurement


Description

The MAAM-011290 is a 5 - 20 GHz MMIC amplifier with 20 dB small signal gain, P_{SAT} of 20 dBm and high reverse isolation of 47 dB. The component requires only a single positive power supply.

Ordering Information

Part Number	Package
MAAM-011290-TR0500	500 piece reel
MAAM-011290-001SMB	Sample Board

Functional Schematic

Pin Configuration^{1,2}

Pin#	Function
1, 5, 6, 10, 12	No Connection
2	RF Input
3, 7, 9	Ground
4	Gate Voltage Not Used
8	RF Output
11	Drain Voltage

MACOM recommends connecting all no connection pins to ground

The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Rev. V3

Electrical Specifications: Freq. = 5 - 20 GHz, T_A = 25°C, V_{DD} = 5 V, Z_0 = 50 Ω

Parameter	Test Condition	Units	Min.	Тур.	Max.
Small Signal Gain	5 GHz 10 GHz 15 GHz 18 GHz 20 GHz	dB	17.5 18.5 — 17.0 —	19.5 20.5 20.0 19.0 18.0	_
Small Signal Gain Variation	_	dB	_	±2.5	_
Input Return Loss	_	dB	_	10	_
Output Return Loss	_	dB	_	13	_
P1dB	5 GHz 10 GHz 15 GHz 18 GHz 20 GHz	dBm	18.0 18.0 — 18.0	19.5 20.0 20.0 20.0 20.0 20.0	_
P _{SAT}	5 GHz 10 GHz 15 GHz 20 GHz	dBm	_	19.5 20.0 20.0 19.0	_
Output IP3	10 dBm Pout per Tone 5 GHz 10 GHz 15 GHz 20 GHz	dBm	_	32 29 28 30	_
Noise Figure	5 GHz 10 GHz 15 GHz 20 GHz	dB	_	4 4 4 5	_
V _{DD} Drain Supply	_	V	_	5	_
Supply Current	_	mA	_	110	135

Rev. V3

Absolute Maximum Ratings^{3,4}

Parameter	Absolute Maximum
RF Power In	10 dBm
V _{DD} Supply Voltage	6 V
Supply Current	150 mA
Junction Temperature ^{5,6}	+150°C
Operating Temperature	-40C to +85°C
Storage Temperature	-65°C to +165°C

- 3. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- 5. Operating at nominal conditions with $T_J \le +150^{\circ}C$ will ensure MTTF > 1 x 10^6 hours.
- Junction Temperature (T_J) = T_C + Θjc * (V * I)
 Typical thermal resistance (Θjc) = 59°C/W.
 a) For T_C = +25°C,
 T_J = 57°C @ 5 V, 107 mA

b) For $T_C = +85^{\circ}C$,

T_J = 120°C @ 5 V, 120 mA

Operating Conditions

Recommended biasing conditions are $V_D = 5 \text{ V}$ and $V_G = 0 \text{ V}$ open circuit.

Simply perform the following for bias:

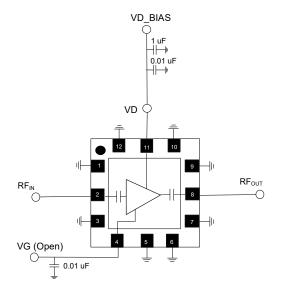
1. Set V_G = Open Circuit

2. Set $V_D = 5 V$

DC blocking is not required on the RF input or RF output since blocking capacitors are provided internally. Use 0.01 μ F and 1 μ F bypass capacitors on the V_D node and a 0.01 μ F capacitor on the V_G node. Place the 0.01 μ F bypass capacitors as close as possible to the chip.

Maximum Operation Conditions

Parameter	Maximum
RF Power In	5 dBm
V _{DD} Supply Voltage	4 - 5 V
Supply Current	120 mA
Junction Temperature ^{5,6}	+150°C
Operating Temperature	-40C to +85°C

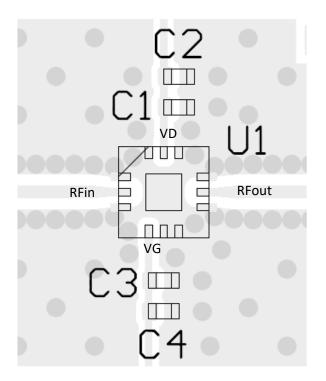

Handling Procedures

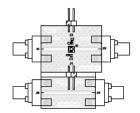
Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these class 1B greater than 500 V HBM devices.

Application Schematic



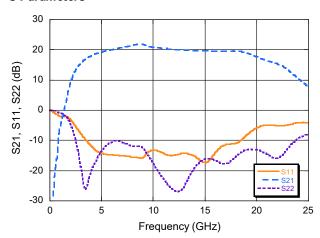


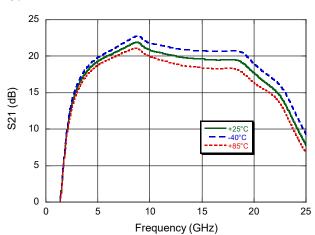
Rev. V3

Evaluation Board

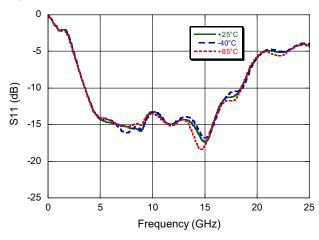
10 mils Rogers RO4350B with 1 oz. copper

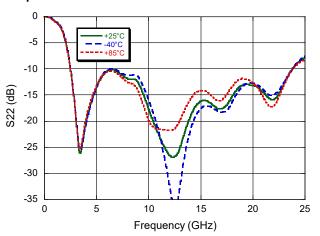
Evaluation Board Parts List

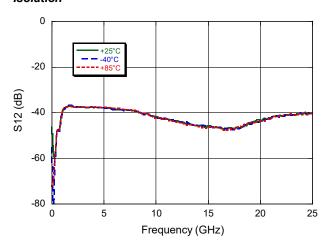

Part	Value	Case Style
C1, C3	0.01 μF	0402
C2	1 μF	0402
C4	NA	NA


Rev. V3

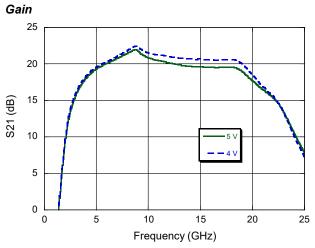
Typical Performance Curves $V_D = 5 V$

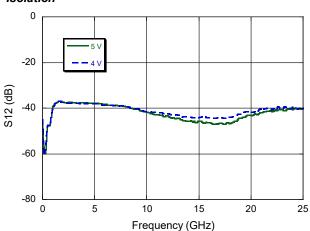

S Parameters


Gain

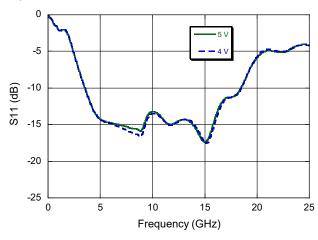

Input Return Loss

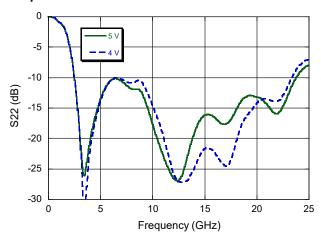
Output Return Loss


Isolation

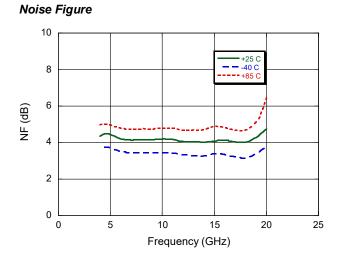


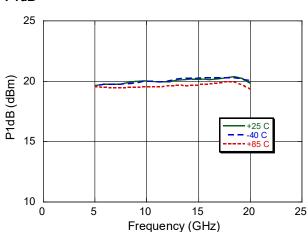
Rev. V3


Typical Performance Curves $V_D = 4$ and 5 V

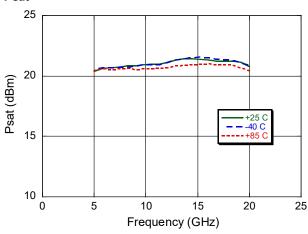

Isolation

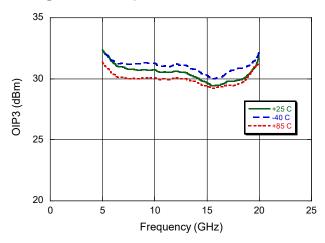
Input Return Loss


Output Return Loss

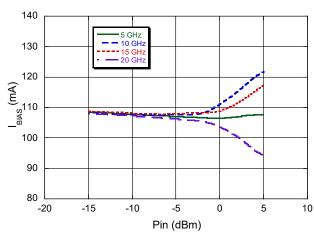


Rev. V3

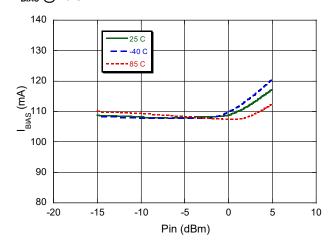

Typical Performance Curves $V_D = 5 V$


P1dB

Psat



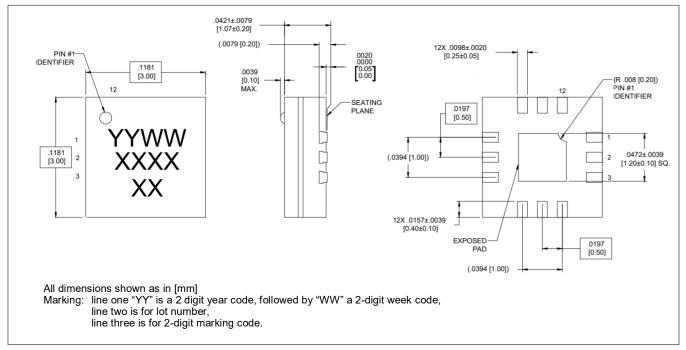
OIP3 @ 10 dBm Pout per Tone



IBIAS

7

IBIAS @ 15 GHZ


MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

Rev. V3

3 mm 12-Lead AQFN Package

Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 3 requirements. Plating is NiPdAu