Power Amplifier, 1 W 20 - 45 GHz

MAAM-011291-DIE

Rev. V1

Features

Wide Frequency Range: 20 - 45 GHz

High Gain: 19 dBP1dB: 28.5 dBmP3dB: 30 dBmBare Die

RoHS* Compliant

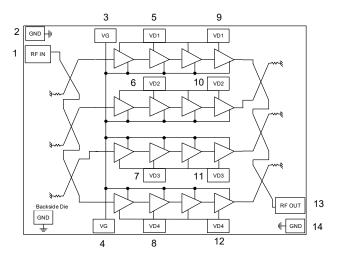
Applications

• ISM/MM

Description

The MAAM-011291-DIE is a 4-stage, 1 W power amplifier MMIC die. This power amplifier operates from 20 to 45 GHz and provides 19 dB of linear gain, 1 W at P3dB compression, and 15% efficiency at P3dB while biased at 5 V.

This device can be used as a power amplifier ideally suited for 5G systems and test and measurement applications in the 20 to 45 GHz range.


This product is fabricated using a GaAs pHEMT process which features full passivation for enhanced reliability.

All data is taken with the chip connected via three 1 mil diameter gold bond wires that are each approximately 350 μ m long.

Ordering Information

Part Number	Package
MAAM-011291-DIE	Bare Die

Functional Schematic

Bond Pad Configuration¹

Pad #	Pad Name	Description
1	RF IN	RF Input
2, 14	GND	Ground
3, 4	VG	Gate Voltage
5, 9	VD1	Drain Voltage 1
6, 10	VD2	Drain Voltage 2
7, 11	VD3	Drain Voltage 3
8, 12	VD4	Drain Voltage 4
13	RF OUT	RF Output

Backside of die must be connected to RF, DC and thermal ground.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Electrical Specifications: Freq. = 20 - 45 GHz, $T_A = +25$ °C, $V_D = 5$ V, $I_{DSQ} = 1$ A, $Z_0 = 50$ Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	P _{IN} = -10 dBm 20 GHz 30 GHz 39 GHz 45 GHz	dB	18.0 15.5 19.0	19.5 17.5 21.0 17.7	_
Input Return loss	_	dB	_	12	_
Output Return Loss	_	dB	_	12	_
P1dB	20 GHz 30 GHz 39 GHz 45 GHz	dBm	27 — 28 —	28 29 29 28	_
P3dB	20 GHz 30 GHz 39 GHz 45 GHz	dBm	_	30	_
OIP3	$P_{OUT}/Tone = 14 dBm, \Delta f = 2 MHz$	dBm	_	35	_
Drain Current	P3dB, 39 GHz	mA	_	1450	1800
Power Added Efficiency	P3dB, 39 GHz	%	_	15	_

Maximum Operating Ratings

Parameter	Rating
Input Power	P _{IN} ≤ 3dB Compression
Drain Voltage	4 to 6 V
Junction Temperature ^{2,3}	+160°C
Operating Temperature	-40°C to +85°C

- 2. Operating at nominal conditions with junction temperature
- ≤ +160°C will ensure MTTF > 1 x 10⁶ hours.
 Junction Temperature (T_J) = T_C + Θ_{JC} * [(V * I) (P_{OUT} P_{IN})]. Typical thermal resistance (Θ_{JC}) = 5.1°C/W a) For T_C = +25°C T_J = 60.1°C @ 5 V, 1604 mA, $P_{OUT} = 30.8 \text{ dBm}, P_{IN} = 18 \text{ dBm}$
 - b) For $T_C = +85^{\circ}C$ $T_J = 115.1$ °C @ 5 V, 1341 mA, $P_{OUT} = 29.3 \text{ dBm}, P_{IN} = 17.6 \text{ dBm}$

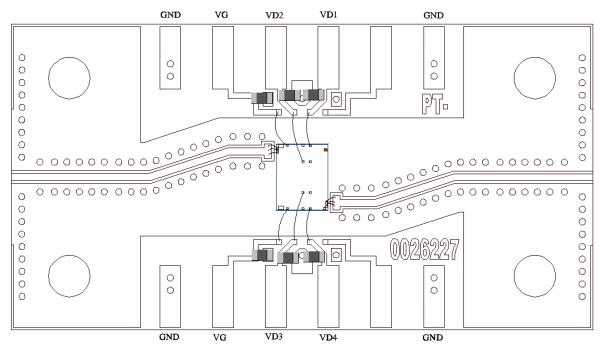
Absolute Maximum Ratings^{4,5}

Parameter	Absolute Maximum
Input Power	23 dBm
Drain Voltage	6.5 V
Gate Voltage	-3 to 0 V
Junction Temperature ⁶	+175°C
Storage Temperature	-65°C to +125°C

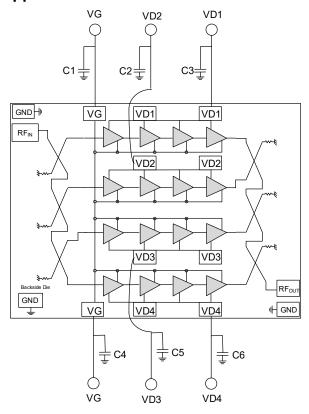
- 4. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- Junction temperature directly effects device MTTF. Junction temperature should be kept as low as possible to maximize lifetime.

Handling Procedures

Please observe the following precautions to avoid damage:


Static Sensitivity

These electronics devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these 300 V HBM Class 1A devices.



Rev. V1

Sample Board Layout

Application Schematic

Parts List

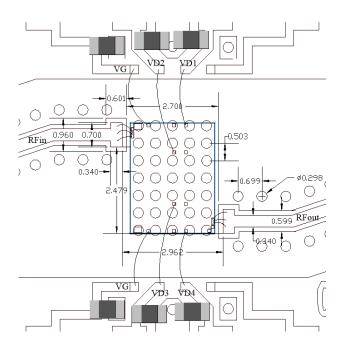
Part	Value	Case Style
C1 - C6	1 µF	0402

Sample Board Loss

Refer to the plot on page 9 for sample board loss.

Sample Board Material Specifications

Top Layer: 1/2 oz Copper Cladding, 0.0175 mm thickness Dielectric Layer: Rogers RO4003C 0.203 mm thickness Bottom Layer: 1/2 oz Copper Cladding, 0.0175 mm thickness Finished overall thickness: 0.238 mm



Rev. V1

Recommended Bonding Diagram and PCB Details:

For optimum performance, RF input and output transmission lines require open stubs on the application board for bonding wire inductance compensation. The physical length for the 1 mil diameter gold wire is approximately $350 \, \mu m$ each for the three wire connection.

Use copper filled and plated over vias for the thermal, DC and RF ground vias.

Units are in mm.

Biasing Conditions

Recommended biasing conditions are $V_D = 5$ V, $I_{DQ} = 1000$ mA (controlled with V_G). The drain bias voltage range is 4 to 6 V, and the quiescent drain current biasing range is 800 to 1200 mA.

 $V_{\rm G}$ pads 3 and 4 are internally connected; therefore, interconnection is not required. Muting can be accomplished by setting the $V_{\rm G}$ to the pinched off voltage ($V_{\rm G}$ = -2 V).

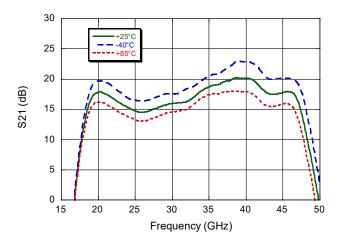
 V_{D} bias must be applied to V_{D1} through $V_{\text{D4}}.$ V_{D1} through V_{D4} supplies are not connected internally.

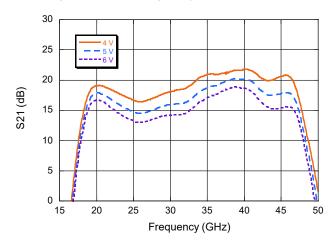
Operating the MAAM-011291-DIE

Turn-on

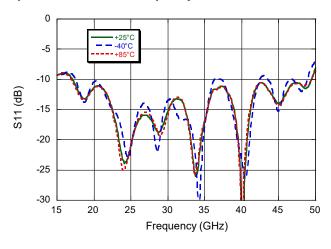
- 1. Apply V_G (-2 V).
- 2. Apply V_D (5.0 V typical).
- 3. Set I_{DQ} by adjusting V_G more positive (typically -0.9 to -1.0 V for I_{DQ} = 1 A).
- 4. Apply RF_{IN} signal.

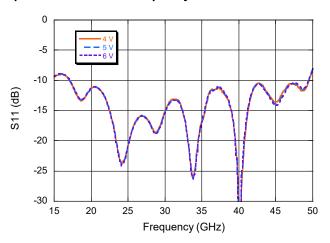
Turn-off

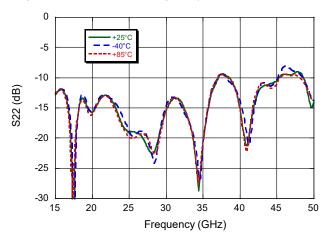

- 1. Remove RF_{IN} signal.
- 2. Decrease V_G to -2 V.
- 3. Decrease V_D to 0 V.

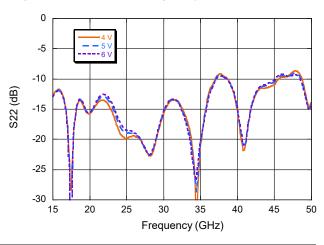

Rev. V1

Typical Performance Curves: $V_D = 5 V$, $I_{DSQ} = 1000 mA$


Small Signal Gain vs. Frequency

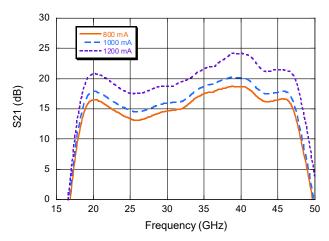

Small Signal Gain vs. Frequency

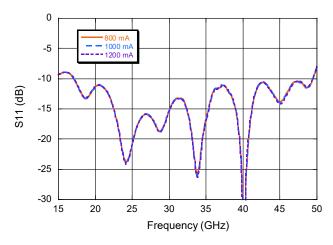

Input Return Loss vs. Frequency


Input Return Loss vs. Frequency

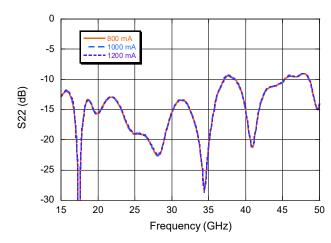
Output Return Loss vs. Frequency

Output Return Loss vs. Frequency



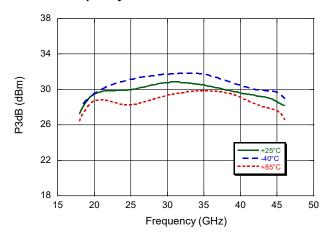

Rev. V1

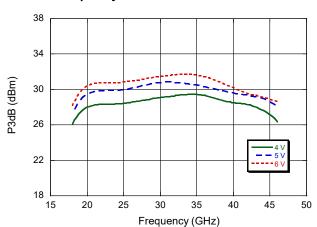
Typical Performance Curves: V_D = 5 V


Small Signal Gain vs. Frequency

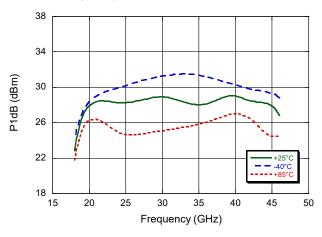
Input Return Loss vs. Frequency

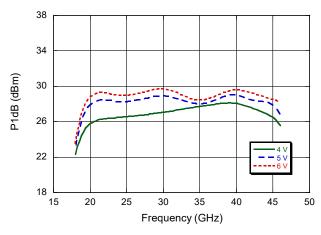
Output Return Loss vs. Frequency

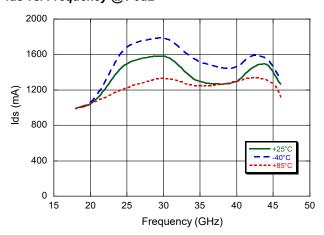


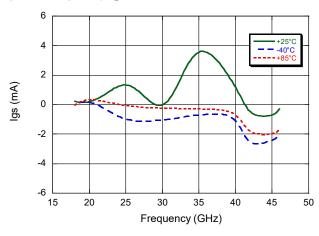

MAAM-011291-DIE Rev. V1

Typical Performance Curves: $V_D = 5 V$, $I_{DSQ} = 1000 mA$


P3dB vs. Frequency


P3dB vs. Frequency

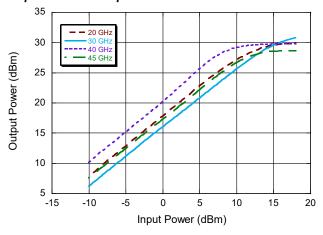

P1dB vs. Frequency

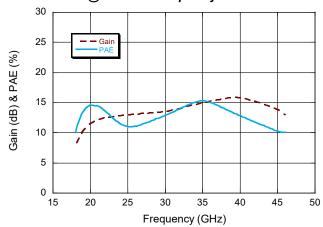

P1dB vs. Frequency

Ids vs. Frequency @ P3dB

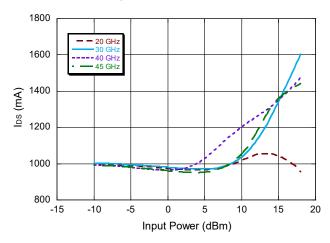
Igs vs. Frequency @ P3dB

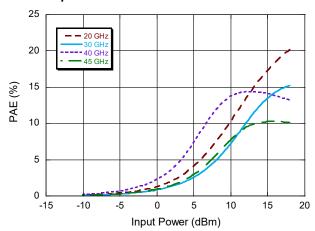
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.


Visit www.macom.com for additional data sheets and product information.


Rev. V1

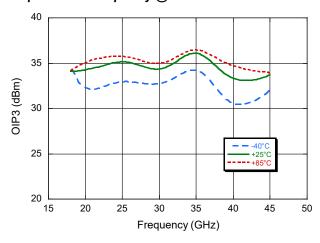
Typical Performance Curves: $V_D = 5 \text{ V}$, $I_{DSQ} = 1000 \text{ mA}$

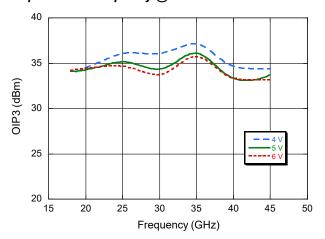

Output Power vs. Input Power


Gain and PAE @ P3dB vs. Frequency

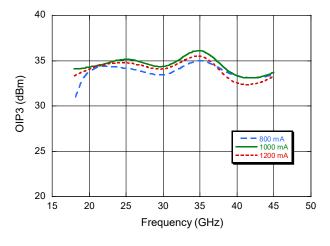
Drain Current vs. Input Power

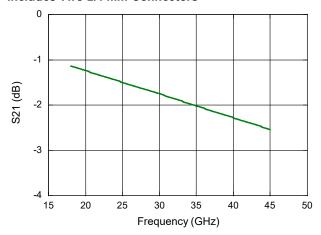
PAE vs. Input Power



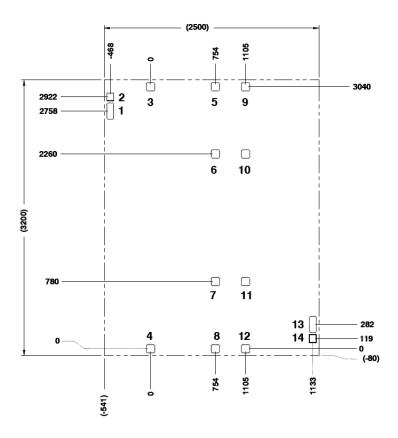

Rev. V1

Typical Performance Curves: $V_D = 5 \text{ V}$, $I_{DSQ} = 1000 \text{ mA}$


Output IP3 vs. Frequency @ Pout = 14 dBm / Tone


Output IP3 vs. Frequency @ Pout = 14 dBm / Tone

Output IP3 vs. Frequency @ Pout = 14 dBm / Tone


Sample Board Loss Includes Two 2.4 mm Connectors

Rev. V1

Die Dimensions

Units are in microns with a tolerance of $\pm 5~\mu m$, except for die exterior dimensions which are street-center-to-street-center – nominal saw or laser kerf ~ $25~\mu m$ tolerance each dimension. Pad and backside metal is gold. Die thickness is $100~\pm~10~\mu m$.

Pad Dimensions (µm)

Pad#	x	Y
1, 13	76	186
2, 14	76	86
3—12	93	93