

Rev. V4

Features

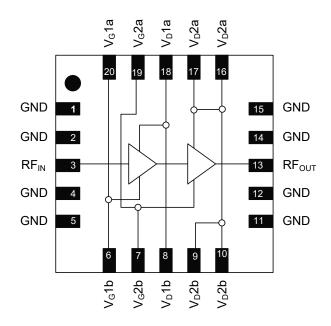
- Linear Gain: 20 dB
- Saturated Output Power: 39 dBm Pulsed
- 50 Ω Input / Output Match
- Lead-Free 5 mm 20-lead PQFN Package
- RoHS* Compliant

Applications

- Point-to-Point Radios
- C-Band Radar

Description

The MAAP-011027 is a 2-stage, 8 W saturated C-band power amplifier in a 5 mm 20 lead PQFN package, allowing for easy assembly. This product is fully matched to 50 ohms on both the input and output. It can be used as a power amplifier stage or as a driver stage in high power pulsed applications.


Each device is 100% RF tested to ensure performance compliance.

Ordering Information¹

Part Number	Package
MAAP-011027-TR0500	500 piece reel
MAAP-011027-TR1000	1000 piece reel
MAAP-011027-000SMB	Sample Board

1. Reference Application Note M513 for reel size information.

Functional Schematic

Pin Configuration²

Pin#	Function	Pin#	Function
1,2,4,5,11, 12,14,15,	Ground	13	RF _{OUT}
3	RF _{IN}	16,17	V _D 2a
6	V_G1b	18	V _D 1a
7	V _G 2b	19	V _G 2a
8	V _D 1b	20	V _G 1a
9,10	V _D 2b	21	Paddle ³

- MACOM recommends connecting unused package pins to ground.
- The exposed pad centered on the package bottom must be connected to RF and DC ground.

1

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Rev. V4

Electrical Specifications:

Freq. 5.2 - 5.9 GHz, V_{DD} = 9 V Pulsed, 100 μ s Pulse Width,10% Duty Cycle , Z_0 = 50 Ω

Parameter	Units	Min.	Тур.	Max.
Gain	dB	17	20	_
Input Return Loss	dB	_	10	_
Output Return Loss	dB	_	10	_
P _{SAT}	dBm	37	39	_
Pulse Period	μs	_	100	_
Pulse Duty Cycle	%	_	10	_
Efficiency	%	_	37	_
Small Signal Current	А	_	1	_

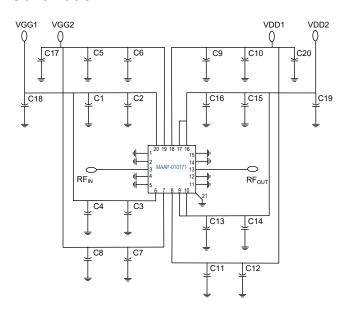
Maximum Operating Ratings^{4,5,6}

Parameter	Absolute Maximum
Input Power	28 dBm
Supply Voltage	11 V
Junction Temperature ⁷	+150 °C
Operating Temperature	-40°C to +85°C
Storage Temperature	-55°C to +150°C

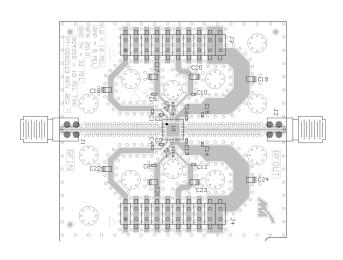
- 4. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- Operating at nominal conditions with T_J ≤ +150°C will ensure MTTF > 1 x 10⁶ hours.
- 7. Junction Temperature (T_J) = T_C + Θ _{JC} * (V * I) Typical CW thermal resistance (Θ _{JC}) = 7.7°C/W

Handling Procedures

Please observe the following precautions to avoid damage:


Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these class 1A devices.



Rev. V4

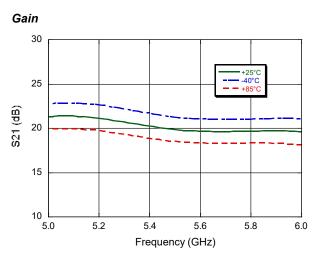
Schematic

Recommended PCB Layout

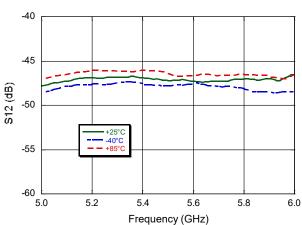
Parts List

Component	Value	Package
C2, C3, C5, C7, C9, C11, C13, C16	100 pF	0402
C1, C4, C6, C8, C10, C12, C14, C15	1000 pF	0402
C17, C18, C21, C22	1 µF	0805
C19, C20, C23, C24	10 nF	0805

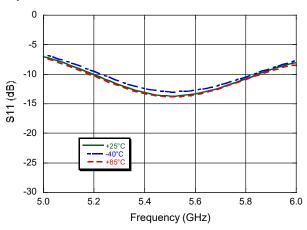
Operating the MAAP-011027

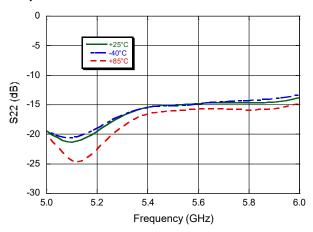

To operate the MAAP-011027, follow these steps. Ramp down or shut down in reverse order.

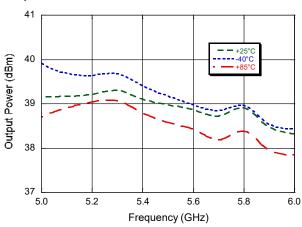
- 1. Apply V_G between -1 V and -0.5 V to set IDQ to 1 A
- 2. Apply RF Power ON
- 3. Apply V_{DD} Pulsed

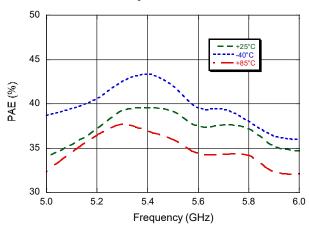


Rev. V4


Typical Performance Curves over Temperature

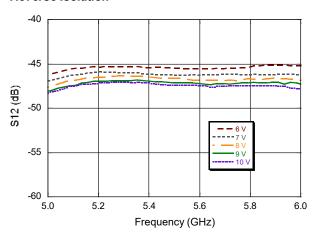

Reverse Isolation


Input Return Loss

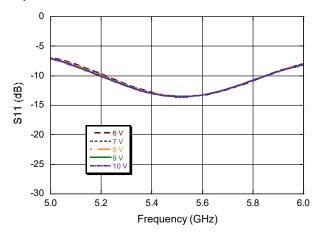

Output Return Loss

Output Power

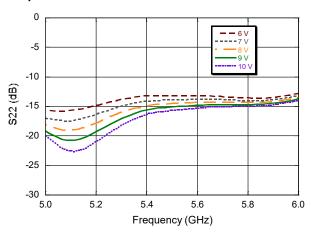
Power Added Efficiency

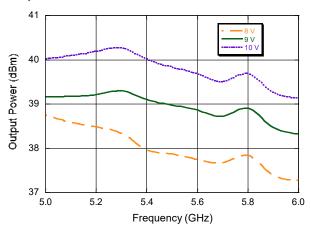

Rev. V4

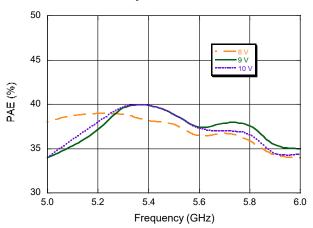
Typical Performance Curves over Voltage


Gain 25 25 20 15 10 5.0 5.2 5.4 5.6 5.8 6.0

Frequency (GHz)

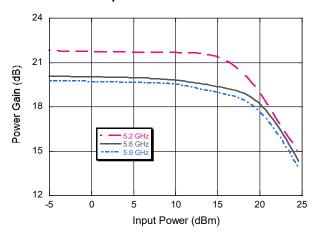

Reverse Isolation

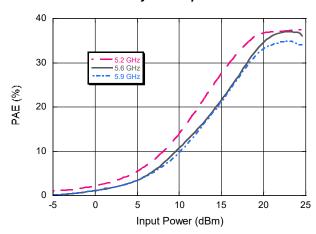

Input Return Loss


Output Return Loss

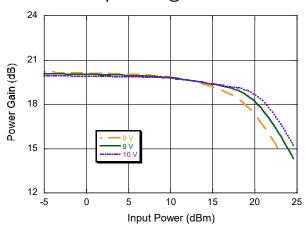
Output Power

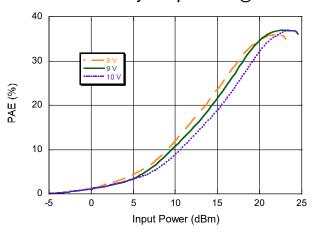
Power Added Efficiency

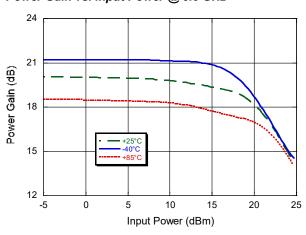


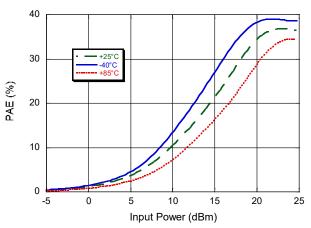

Rev. V4

Typical Performance Curves


Power Gain vs. Input Power

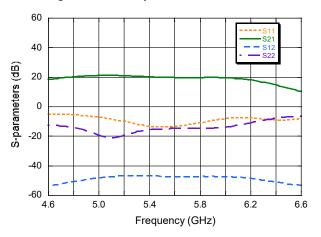

Power Added Efficiency vs. Output Power

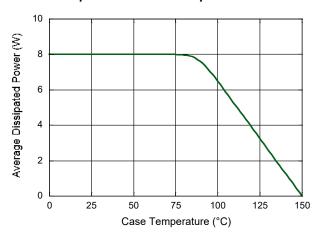

Power Gain vs. Input Power @ 5.6 GHz


Power Added Efficiency vs. Input Power @ 5.6 GHz

Power Gain vs. Input Power @ 5.6 GHz

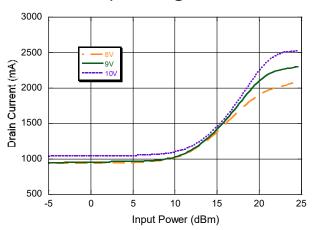
Power Added Efficiency vs. Input Power @ 5.6 GHz



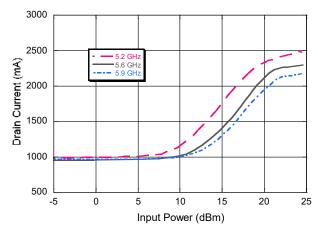

Rev. V4

Typical Performance Curves

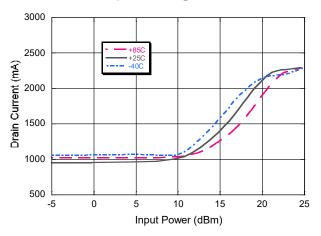
Small Signal wideband performance



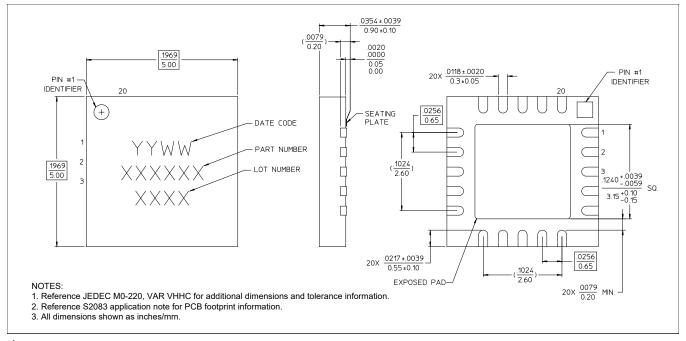
Power Dissipation⁸ vs. Case Temperature^{9,10}



- 8. Average dissipated power: P_{DISS} = P_{DC} + P_{IN} P_{OUT} (all powers are average in Watts)
- Average power is integrated over pulse period, for short pulses (not exceeding pulse width of 100 μs), average power can be approximated as P_{AVERAGE} = P_{PEAK}*D, where D is duty cycle.
- 10.For pulses wider than 100 μs self heating during pulse reduces allowable average dissipated power.


Drain Current vs. Input Power @ T = +25°C, F = 5.6 GHz

Drain Current vs. Input Power @ T = +25°C, $V_D = 9 \text{ V}$


Drain Current vs. Input Power @ F = 5.6 GHz, $V_D = 9$ V

Rev. V4

Lead-Free 5 mm 20-Lead PQFN[†]

[†] Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level (MSL) 3 requirements. Plating is 100% matte tin over copper.