Power Amplifier, 4 W 28.5 - 31.0 GHz

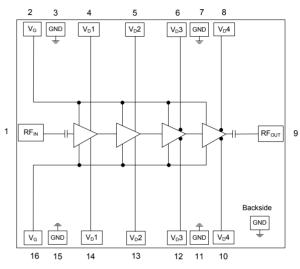
Features

- High Gain: 24 dB @ 30 GHz
- P1dB: 34.5 dBm
- P_{SAT}: 36.5 dBm
- IM3 Level: -27 dBc @ P_{OUT} = 29 dBm/tone
- Power Added Efficiency: 23% @ P_{SAT}
- Return Loss: 10 dB
- Bare Die Dimensions: 3.1 x 2.8 x 0.05 mm
- RoHS* Compliant

Description

The MAAP-011139-DIE is a 4-stage, 4 W power amplifier in bare die form. This power amplifier operates from 28.5 to 31.0 GHz and provides 24 dB of linear gain, 4 W saturated output power, and 23% efficiency while biased at 6 V.

The MAAP-011139-DIE is a power amplifier ideally suited for VSAT communications.


This product is fabricated using a GaAs pHEMT device process which features full passivation for enhanced reliability.

Ordering Information

Part Number	Package
MAAP-011139-DIE	Die in Gel Pack ¹

1. Die quantity varies

Functional Diagram

Pin Configuration²

Pad	Function	Description
1	RF _{IN}	RF Input
2, 16	V _G	Gate Voltage
3, 7, 11, 15 & backside	GND	Ground
4, 14	V _D 1	Drain Voltage 1
5, 13	V _D 2	Drain Voltage 2
6, 12	V _D 3	Drain Voltage 3
8, 10	V _D 4	Drain Voltage 4
9	RF _{OUT}	RF Output

2. Backside metal is RF, DC and thermal ground.

* Restrictions on Hazardous Substances, European Union Directive 2011/65/EU.

1

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

MACOM

Power Amplifier, 4 W 28.5 - 31.0 GHz

Rev. V2

Electrical Specifications³: Freq. = 30 GHz, T_c = +25°C, V_D = +6 V, Z_0 = 50 Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	P _{IN} = 0 dBm	dB	22	24	_
P _{OUT}	P _{IN} = 17 dBm	dBm	35.0	36.5	_
IM3 Level	P _{OUT} = 29 dBm / tone	dBc	_	-27	_
Power Added Efficiency	P _{SAT} (P _{IN} = 17 dBm)	%	_	23	_
Input Return Loss	P _{IN} = -20 dBm	dB	_	10	_
Output Return Loss	P _{IN} = -20 dBm	dB	_	10	
Quiescent Current	I_{DQ} (see bias conditions, page 5)	mA	_	2000	_
Current	P _{SAT} (P _{IN} = +17 dBm)	mA	_	3200	_

3. Specifications apply to MMIC die with two RF input and two RF output bond wires.

Maximum Operating Ratings

Parameter	Rating
Input Power	+17 dBm
Junction Temperature ^{4,5}	+160°C
Operating Temperature	-40°C to +85°C

4. Operating at nominal conditions with junction temperature \leq +160°C will ensure MTTF > 1 x 10⁶ hours.

5. Junction Temperature (T_J) = T_C + Θ_{JC} * ((V * I) - (P_{out} - P_{IN}) Typical thermal resistance (Θ_{JC}) = 3.4°C/W.

a) For T_c = +25°C,

- T_J = +75°C @ 6 V, 3.2 A, P_{OUT} = 36.5 dBm, P_{IN} = 17 dBm b) For T_C = +85°C,
- T_J = +133°C @ 6 V, 3.0 A, P_{OUT} = 36.0 dBm, P_{IN} = 17 dBm

Absolute Maximum Ratings^{6,7}

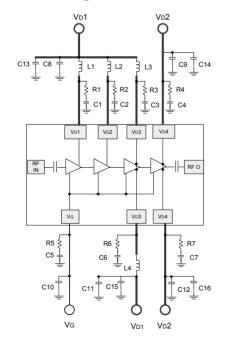
Parameter	Absolute Maximum
Input Power	+23 dBm
Drain Voltage	+6.5 V
Gate Voltage	-3 to 0 V
Junction Temperature ⁸	+175°C
Storage Temperature	-65°C to +150°C

6. Exceeding any one or combination of these limits may cause permanent damage to this device.

 MACOM does not recommend sustained operation near these survivability limits.

8. Junction temperature directly effects device MTTF. Junction temperature should be kept as low as possible to maximize lifetime.

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.


Visit <u>www.macom.com</u> for additional data sheets and p

Power Amplifier, 4 W 28.5 - 31.0 GHz

Application PCB Layout

Application Diagram

Application Parts List

Part	Value	Case Style
C1 - C7	0.01 µF	0402
C8 - C12	1 µF	0603
C13 - C16	10 µF	0805
R1 - R7	10 Ω	0402
L1 - L4 (Chip Ferrite Bead)	BLM18HE601SN1D	0603

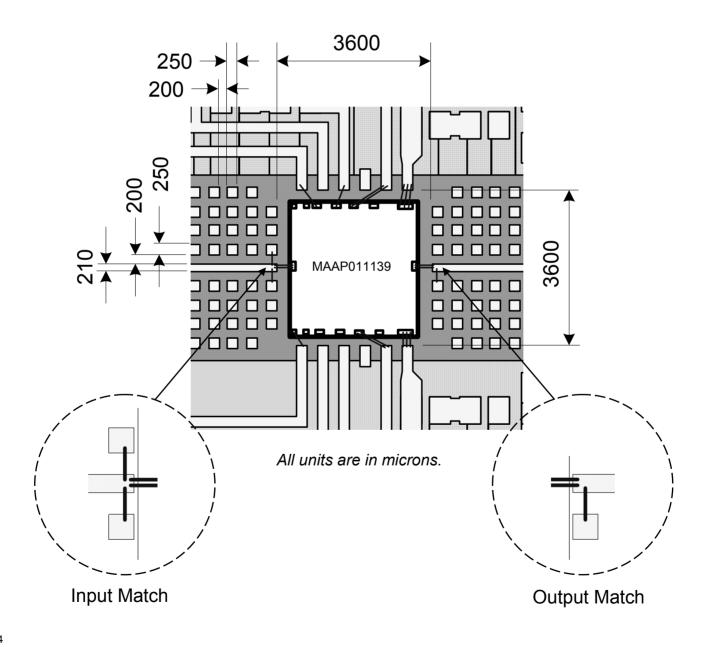
PCB Material Specifications

Top Layer: 1/2 oz Copper Cladding, 0.017 mm thickness *Dielectric Layer:* Rogers RO4350B, 0.101 mm thickness *Bottom Layer:* 1/2 oz Copper Cladding, 0.017 mm thickness *Finished overall thickness:* 0.135 mm

3

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

МАСОМ



Power Amplifier, 4 W 28.5 - 31.0 GHz

Rev. V2

Recommended Bonding Diagram and PCB Layout Detail:

For optimum power match, RF input and output microstrip lines require open stubs on the application board for bonding wire inductance compensation. Optimum bonding wire inductance for the RF I/O connection is 0.2 nH, and physical length for the gold bond wire (.001" dia.) is approximately 350 µm each for the two wire connection.

4

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Power Amplifier, 4 W 28.5 - 31.0 GHz

Application Information

The MAAP-011139 is designed to be easy to use yet high performance. The ultra small size and simple bias allow easy placement on system board. RF input and output ports are DC de-coupled internally.

Biasing conditions

Recommended biasing conditions are $V_D = 6 V$, $I_{DQ} = 2000 \text{ mA}$ (controlled with V_G). The drain bias voltage range is 3 to 6 V, and the quiescent drain current biasing range is 1500 to 2500 mA.

 V_G pads 2 and 16 are connected internally; choose either pad for layout convenience. Muting can be accomplished by setting the V_G to the pinched off voltage (V_G = -2 V).

 V_{D} bias must be applied to $V_{\text{D}}1,\,V_{\text{D}}2,\,V_{\text{D}}3,\,\text{and}\,\,V_{\text{D}}4$ pads.

 $V_{\text{D}}1$ pads 4 and 14 are connected internally, and only one pad is required for biasing. Choose either pad for layout convenience.

 $V_{\text{D}}2$ pads 5 and 13 are connected internally, and only one pad is required for biasing. Choose either pad for layout convenience.

Both V_D3 pads (6 and 12) are required for current symmetry.

Both V_D4 pads (8 and 10) are required for current symmetry.

Die Attachment

This product is manufactured from 0.050 mm (0.002") thick GaAs substrate and has vias through to the backside to enable grounding to the circuit.

Recommended conductive epoxy is Namics Unimec XH9890-6. Epoxy should be applied and cured in accordance with the manufacturer's specifications and should avoid contact with the top of the die.

5

Turn-on

- 1. Apply V_G (-1.5 V).
- 2. Apply V_D (6.0 V typical).
- 3. Set I_{DQ} by adjusting V_G more positive (typically V_G~ -0.9 V for I_{DQ} = 2000 mA).
- 4. Apply RF_{IN} signal.

Turn-off

- 1. Remove RF_{IN} signal.
- 2. Decrease V_G to -1.5 V.
- 3. Decrease V_D to 0 V.

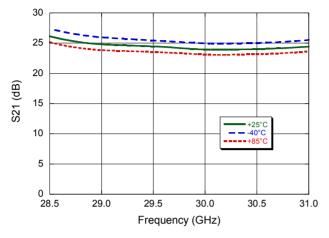
Handling Procedures

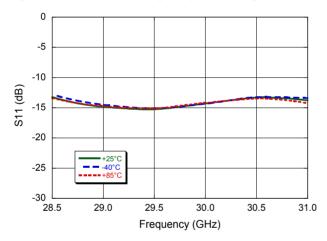
Please observe the following precautions to avoid damage:

Static Sensitivity

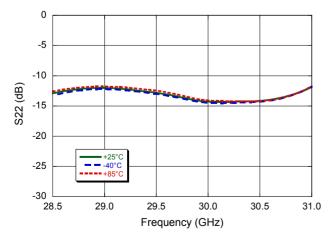
These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1A devices.

Operating the MAAP-011139-DIE


M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.


Power Amplifier, 4 W 28.5 - 31.0 GHz

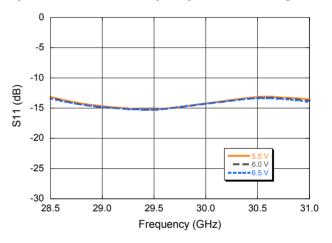
Typical Performance Curves⁹


Small Signal Gain vs. Frequency over Temperature

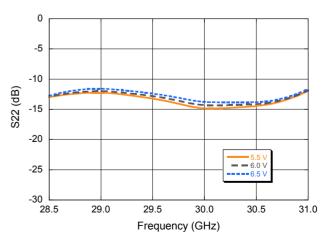
Input Return Loss vs. Frequency over Temperature



Output Return Loss vs. Frequency over Temperature

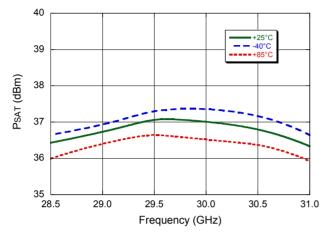


6

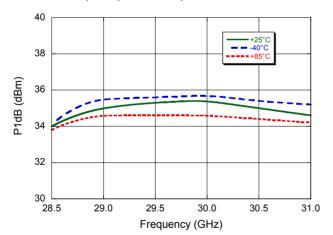

Small Signal Gain vs. Frequency over Bias Voltage

Input Return Loss vs. Frequency over Bias Voltage

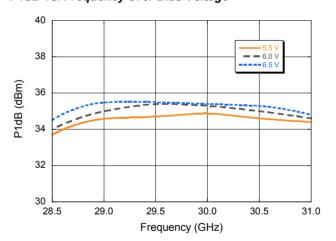
Output Return Loss vs. Frequency over Bias Voltage

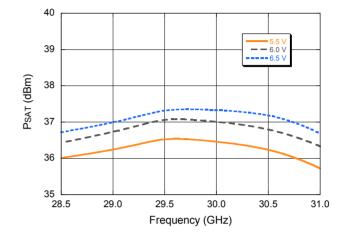


M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.


Power Amplifier, 4 W 28.5 - 31.0 GHz

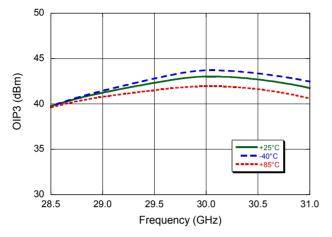
Typical Performance Curves⁹


P_{SAT} vs. Frequency over Temperature


P1dB vs. Frequency over Temperature

P1dB vs. Frequency over Bias Voltage

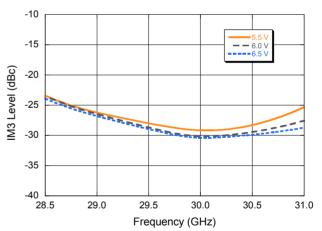
P_{SAT} vs. Frequency over Bias Voltage


M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.



Typical Performance Curves⁹

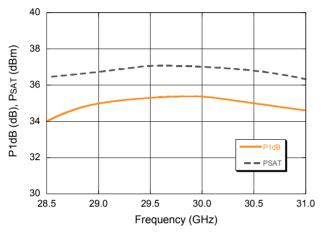
Output IP3 vs. Frequency over Temperature


IM3 vs. Frequency over Temperature (P_{OUT} = +29 dBm/Tone)

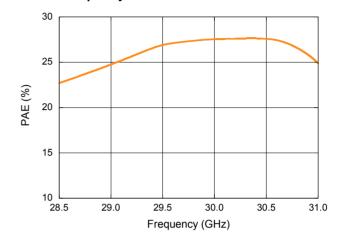
Output IP3 vs. Frequency over Bias Voltage

IM3 vs. Frequency over Bias Voltage (P_{OUT} = +29 dBm/Tone)

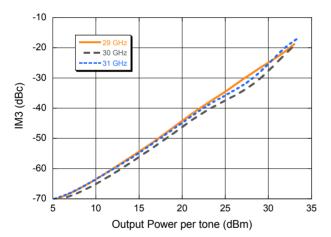
8

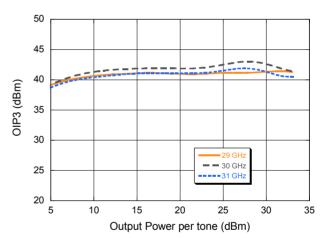

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

МЛСОМ


Power Amplifier, 4 W 28.5 - 31.0 GHz

Typical Performance Curves⁹


P1dB, P_{SAT} vs. Frequency


PAE vs. Frequency

IM3 vs. Output Power per Tone

Output IP3 vs. Output Power per Tone

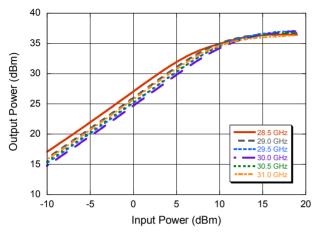
Rev. V2

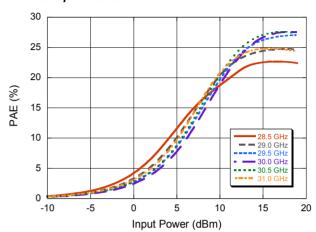
MACOM

9

Power Amplifier, 4 W 28.5 - 31.0 GHz

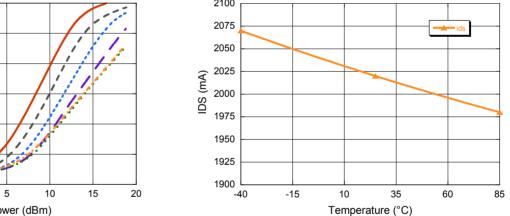
Typical Performance Curves⁹

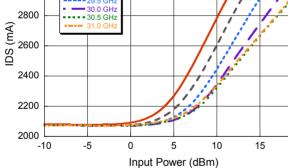

Output Power vs. Input Power


Drain Current vs. Input Power

28.5 GHz

3200

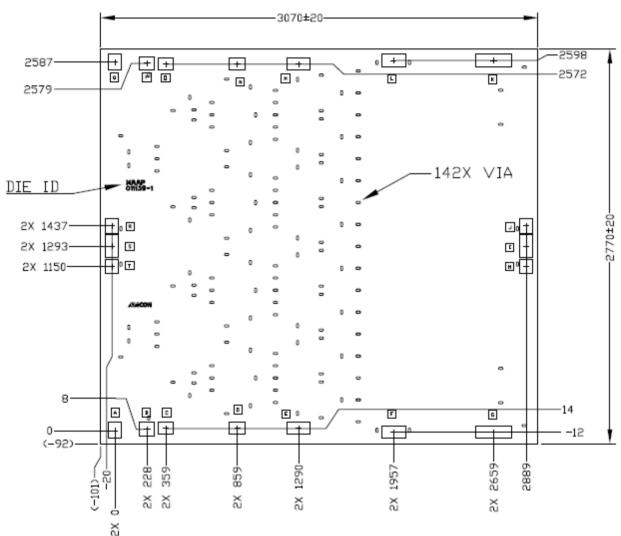

3000



PAE vs. Input Power

Quiescent Drain Current over Temperature

9. Typical performance curves are achieved by using the recommended bonding diagram and PCB layout detail.


10

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

MACOM

Power Amplifier, 4 W 28.5 - 31.0 GHz

MMIC Die Outline

Bond Pad Detail

Pad	Size (x)	Size (y)
A, Q	88	112
B, P	105	96
C, D, O, N	108	83
E, M	163	83
F, L	169	88
G, K	248	88
H, J, R, T	89	99
I, S	89	159

11

Notes:

- 1. All units are in $\mu m,$ unless otherwise noted, with a tolerance of ±5 $\mu m.$
- 2. Die thickness is $50 \pm 10 \ \mu m$.

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

MACOM