

MAAP-011319

Rev. V1

Features

- 24 dB Gain
- 26 dBm P1dB
- 27 dBm P3dB
- 5.5 V Drain Supply
- 4 mm, 24 lead AQFN Package
- RoHS* Compliant

Applications

- 5G
- Satellite Communications

Description

The MAAP-011319 is a 1/2 W Ka-band power amplifier. The PA has a 26 dBm typical P1dB and a 27 dBm typical P3dB with 24 dB of gain. The drain bias supply is 5.5 V. The gate voltage is adjusted to set the drain current to 450 mA.

The MAAP-011319 is designed for medium power applications in the 24 - 30 GHz band. The 4 mm, 24 lead AQFN package is lead free and RoHS compliant.

Block Diagram

Pin Configuration^{1,2}

Pin #	Pin Name	Description
1,5-11, 13, 14, 18, 19, 21, 22, 24	N/C	No Connect
2,4,15,17	GND	Ground
3	RF _{IN}	RF Input
12	V _{DET}	Detector Voltage
16	RF _{OUT}	RF Output
20	V _{DD}	Drain Voltage
23	V _{GG}	Gate Voltage

1. It is recommended that all N/C (No Connect) pins be grounded.

2. The exposed pad centered on the package bottom must be connected to RF, DC, and thermal ground.

Ordering Information

Part Number	Package
MAAP-011319-TR1000	1000 Piece Reel
MAAP-011319-TR3000	3000 Piece Reel
MAAP-011319-SMB	Sample Board

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

MAAP-011319

Rev. V1

Electrical Specifications: V_{DD} = +5.5 V, I_{DQ} = 450 mA, T_A = 25°C, Z_0 = 50 Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	24.0 - 27.5 GHz 27.0 - 30.0 GHz	dB	21.0	23.5 25.0	_
Gain Flatness	24.0 - 27.5 GHz 27.0 - 30.0 GHz	dB	_	0.5 2.0	_
Input Return Loss	24.0 - 27.5 GHz 27.0 - 30.0 GHz	dB	_	15 12	_
Output Return Loss	24.0 - 27.5 GHz 27.0 - 30.0 GHz	dB	_	12 12	—
P1dB	24.0 - 27.5 GHz 27.0 - 30.0 GHz	dBm	_	26 26	_
P3dB	24.0 - 27.5 GHz 27.0 - 30.0 GHz	dBm	_	27.0 27.5	
POUT	24 GHz, P _{IN} = 6.9 dBm 30 GHz, P _{IN} = 3.5 dBm	dBm	26.0 25.5	28.0 27.5	_
OIP3	24.0 - 27.5 GHz, 15 dBm/tone, 10 MHz spacing 27.0 - 30.0 GHz, 15 dBm/tone, 10 MHz spacing	dBm	_	37.0 36.5	
Noise Figure	24.0 - 27.5 GHz 27.0 - 30.0 GHz	dB	_	5 5	
V _{DET}	3 dBm Output Power 26 dBm Output Power	V	_	0.1 1.9	

Maximum Operating Conditions

Parameter	Maximum	
Input Power	8 dBm	
V _{DD}	+6 V	
V _{GG}	-3 to 0 V	
Junction Temperature ^{3,4}	+160°C	
Operating Temperature	-40°C to +85°C	

- 3. Operating at nominal conditions with $T_{\rm J}$ \leq +160°C will ensure MTTF > 1 x 10 6 hours.
- 4. Junction Temp. (T_J) = T_C + Ojc * ((V * I) (P_{OUT} P_{IN})). Typical thermal resistance (Ojc) = 29.3°C/W.
 - a) For $T_c = +85^{\circ}C$ and 27 GHz,
 - $^{\prime}T_{\rm J}$ = 145°C @ 5.5 V, 450 mA, P_{\rm OUT} = 26.3 dBm, P_IN = 7 dBm b) For Tc = +25°C and 27 GHz,
 - T_J = 84°C @ 5.5 V, 450 mA, P_{OUT} = 26.6 dBm, P_{IN} = 7 dBm

Absolute Maximum Ratings^{5,6}

Parameter	Absolute Maximum	
Input Power	10 dBm	
V _{DD}	+6.5 V	
V _{GG}	-5 to 0 V	
Junction Temperature ⁷	+180°C	
Storage Temperature	-55°C to +150°C	

5. Exceeding any one or combination of these limits may cause permanent damage to this device.

6. MACOM does not recommend sustained operation near these survivability limits.

 Junction temperature directly effects device MTTF. Junction temperature should be kept as low as possible to maximize lifetime.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

MAAP-011319

Rev. V1

Bias Sequence

All gate voltages must be applied prior to applying drain voltages.

- 1. Apply V_{GG} (about -1.5 V) to pin 23.
- 2. Apply V_{DD} (+5.5 V) to pin 20.
- 3. Adjust V_{GG} to set I_{DQ} to 450 mA.

Shut down by setting $V_{DD} = 0 V$ first.

Application Schematic

Parts List

Part #	Value	Case Style	
C1, C2	10 µF	1210	
C3, C4	1000 pF	0402	
C5	1 µF	0402	
J1, J2	100-mil pitch double row DC header		
J3 - J6	Southwest 2.4 mm, 5 mil pin diameter		

Recommended PCB Information

RF input and output are 50 Ω transmission lines on single layer 7.3 mil Rogers RO4350B LoPro with 1.5 oz. Cu. For best thermal management, use as many copper filled vias under the device as physically possible. The filled vias should be plated over. 8 mil diameter vias in a 5 x 5 array are used on this sample board.

PCB Layout Stack-Up

Finished board thickness is in mils

Sample Board Layout

Sample Board Thru Line Loss

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

For further information and support please visit: <u>https://www.macom.com/support</u>

MAAP-011319

Rev. V1

Typical Performance Curves: V_{DD} = 5.5 V, I_{DQ} = 450 mA

Small Signal Gain vs. Frequency over Temperature

Input Return Loss vs. Frequency over Temperature

Output Return Loss vs. Frequency over Temperature

4

Small Signal Gain vs. Frequency over Bias Current

Input Return Loss vs. Frequency over Bias Current

Output Return Loss vs. Frequency over Bias Current

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Typical Performance Curves: V_{DD} = 5.5 V, I_{DQ} = 450 mA

P1dB vs. Frequency over Temperature

P3dB vs. Frequency over Bias Current

P1dB vs. Frequency over Bias Current

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

For further information and support please visit: <u>https://www.macom.com/support</u>

MAAP-011319

Rev. V1

Typical Performance Curves: V_{DD} = 5.5 V, I_{DQ} = 450 mA

Output IP3 vs. Output Power over Temperature @ 25 GHz

Output IP3 vs. Output Power over Temperature @ 29 GHz

Noise Figure vs. Frequency over Temperature

Output IP3 vs. Output Power over Temperature @ 27 GHz

Output IP3 vs. Frequency over Temperature @ 19 dBm/TONE

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

MAAP-011319 Rev. V1

Typical Performance Curves: V_{DD} = 5.5 V, I_{DQ} = 450 mA

PAE vs. Input Power

Gate Current vs. Output Power

Detector Voltage vs. Output Power

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

MAAP-011319 Rev. V1

Lead-Free 4 mm 24-Lead AQFN Package[†]

[†] Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 3 requirements. Plating is NiPdAuAg

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.