

Rev. V1

Features

High Gain: 18.0 dB
P1dB: 25.5 dBm
P3dB: 27 dBm

Output IP3: 34.5 dBm
 Bias Voltage: V_{DD} = 8 V
 Bias Current: I_{DSQ} = 220 mA
 50 Ω Matched Input / Output

 Temperature Compensated Output Power Detector

Lead-Free 5 mm 32-lead AQFN Package

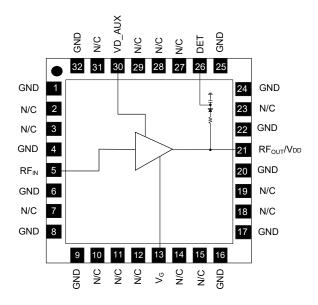
RoHS* Compliant

Applications

- Test & Measurement
- EW, ECM, and Radar

Description

The MAAP-011324 is a 0.25 W distributed power amplifier offered in a lead-free 5 mm 32-lead AQFN package. The power amplifier operates from DC to 27 GHz and provides 18 dB of linear gain and 27 dBm of output power at 3-dB compression. The device is fully matched across the band and includes a temperature compensated output power detector.


The MAAP-011324 can be used as a power amplifier stage or as a driver stage in higher power applications.

Ordering Information¹

Part Number	Package	
MAAP-011324-TR0500	500 piece reel	
MAAP-011324-TR1000	1000 piece reel	
MAAP-011324-SMB	Sample Board	

1. Reference Application Note M513 for reel size information.

Functional Schematic

Pin Configuration^{2,3}

Pin #	Pin Name	Description
1, 4, 6, 8, 9, 16, 17, 20, 22, 24, 25, 32	GND	Ground
2, 3, 7, 10 - 12, 14, 15, 18, 19, 23, 27 - 29, 31	N/C	No Connection
5	RFIN	RF Input
13	VG	Gate Voltage
21	RFout/ Vdd	RF Output / Drain Voltage
26	DET	Power Detector
30	VD_AUX	VD_Auxiliary

- MACOM recommends connecting all no connection pins to ground.
- The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Rev. V1

Electrical Specifications: $T_A = +25^{\circ}C$, $V_{DD} = 8$ V, $I_{DSQ} = 220$ mA, $Z_0 = 50$ Ω

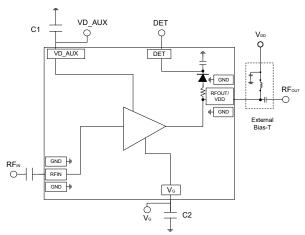
Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	2 GHz 12 GHz 22 GHz 27 GHz	dB	17.0 16.5 17.0	18.5 18.0 18.5 17.5	_
P _{out}	P _{IN} = +10 dBm 2 GHz 12 GHz 22 GHz 27 GHz	dBm	_	28.5 27.0 23.5 20.5	_
P1dB	2 GHz 12 GHz 22 GHz 27 GHz	dBm	24.0 22.5 19.5 —	26.0 24.0 21.5 19.5	_
OIP3	P _{out} = +13 dBm/tone (10 MHz Tone Spacing) 2 GHz 12 GHz 22 GHz 27 GHz	dBm	ı	37.5 34.5 32.5 28.5	_
PAE	P _{IN} = +10 dBm 2 GHz 12 GHz 22 GHz 27 GHz	%	_	26.5 22.5 13.0 6.0	_
Input Return Loss	P _{IN} = -10 dBm	dB	1	15	_
Output Return Loss	P _{IN} = -10 dBm	dB	_	15	_
I _{DD} (with RF drive)	P _{IN} = +10 dBm	mA	_	250	_
I _G	_	mA	_	4	_

Maximum Operating Ratings

Parameter	Rating	
Input Power	13 dBm	
Junction Temperature ^{4,5}	+150°C	
Operating Temperature	-40°C to +85°C	

- Operating at nominal conditions with junction temperature ≤ +150°C will ensure MTTF > 1 x 10⁶ hours.
- 5. Junction Temperature (T_J) = T_C + Θ_{JC} * ((V * I) (P_{OUT} P_{IN})) Typical thermal resistance (Θ_{JC}) = 10.8 °C/W. a) For T_C = +25°C,
 - $T_{\rm J}^{\prime}$ = +43.3 °C @ 8 V, 239 mA, $P_{\rm OUT}$ = 23.4 dBm, $P_{\rm IN}$ = 8 dBm b) For $T_{\rm C}$ = +85°C,
 - $T_J = +103.6 \, ^{\circ}\text{C} \, (20, 8 \, \text{V}, 239 \, \text{mA}, P_{\text{OUT}} = 23 \, \text{dBm}, P_{\text{IN}} = 8 \, \text{dBm}$

Absolute Maximum Ratings^{6,7}


Parameter	Absolute Maximum	
Input Power	25 dBm	
Drain and VD_Aux Voltage	+10 V	
Gate Voltage	-5 to 0 V	
Junction Temperature ⁸	+175°C	
Storage Temperature	-65°C to +125°C	

- 6. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- 8. Junction temperature directly effects device MTTF. Junction temperature should be kept as low as possible to maximize lifetime.

Rev. V1

Application Schematic

Bill of Materials 9,10,11

Part	Value	Size	Comment
C1, C2	1 μF	0402	bypass

- 9. C1 & C2 are required for operation below 1 GHz.
- 10. High power external bias tee was used for measurements.
- 11. External DC block was used on input.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1B devices.

Recommended PCB Information

RF input and output are 50 Ω transmission lines. Single layer 8 mil Rogers RO4003C with 1/2 oz. Cu. Use copper filled vias under ground paddle.

Grounding

It is recommended that the total ground (common mode) inductance not exceed 0.03 nH (30 pH). This is equivalent to placing at least four 8-mil (200-µm) diameter vias under the device, assuming an 8-mil (200-µm) thick RF layer to ground.

Biasing Conditions

Recommended biasing conditions are V_{DD} = 8 V, I_{DSQ} = 220 mA (controlled with V_{G}).

By-pass capacitor C1 for the auxiliary pad is for a low frequency operation extension (below 1 GHz).

There are 2 possible methods to bias the drain:

- 1. The required VDD is applied at RFOUT/VDD through the bias tee. This provides wide band performance of 100 kHz 27 GHz (depending on the bandwidth of the bias tees).
- 2. The required VDD is applied at VD_AUX through a wideband conical inductor. No external bias tee is required at the RFOUT/VDD but an external DC block is required. This provides wide band performance of 100 kHz 27 GHz (depending on the bandwidth of the bias tee).

There are 2 possible methods to bias the gate:

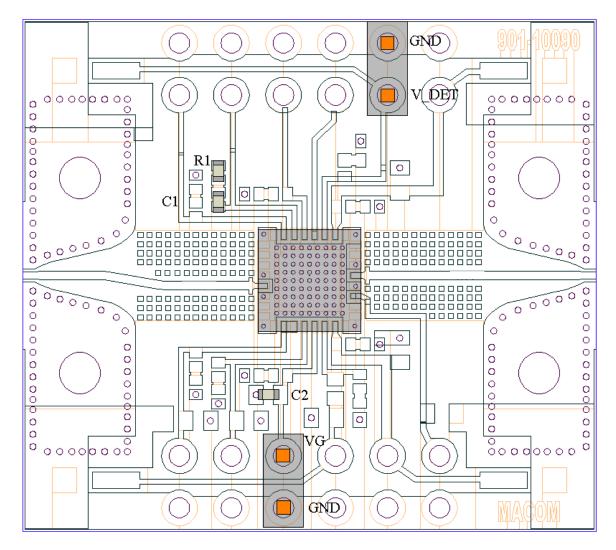
- 1. VG is applied using the VG pad (pin 13) and set using to provide the required current bias (IDSQ). No external bias tee is required at the RF input but an external DC block is required. This provides wide band performance of 100 kHz 27 GHz (depending on the bandwidth of the bias tee).
- 2. VG is applied at the RF input (pin 5) through an external bias tee on the RF input line and set to provide the required current bias (IDSQ). This provides wide band performance of 100 kHz 27 GHz (depending on the bandwidth of the bias tees).

Operating the MAAP-011324 Turn-on

- 1. Apply V_G (-4.5 V).
- 2. Increase V_{DD} to 8 V.
- 3. Set I_{DSQ} by adjusting V_G more positive (typically -0.53 V for I_{DSQ} = 220 mA).
- 4. Apply RF_{IN} signal.

Turn-off

- 1. Remove RF_{IN} signal.
- 2. Decrease V_G to -4.5 V.
- 3. Decrease V_{DD} to 0 V.


3

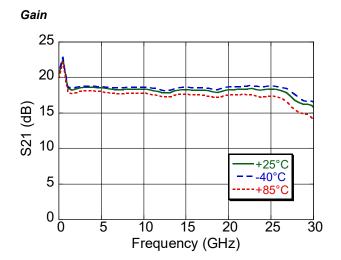
Rev. V1

Sample Board Layout

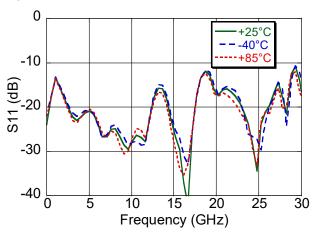
R1 is a zero ohm resistor and vias underneath package need to be solid copper filled and plated over. Do not use copper paste for vias. The MACOM sample board uses 81 vias underneath the IC. Gerber files are available upon request.

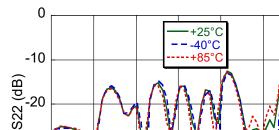
Sample Board Material Specifications

Top Layer: 1/2 oz Copper Cladding, 0.017 mm thickness Dielectric Layer: Rogers RO4003C 0.203 mm thickness Bottom Layer: 1/2 oz Copper Cladding, 0.017 mm thickness



Rev. V1


Typical Performance Curves V_{DD} = 8 V, I_{DSQ} = 220 mA, V_{G} = -0.53 V typical


S Parameters 30 20 S21, S11, S22 (dB) 0 0 0 0 0 **S11** --- S22 -30 15 20 25 30

Frequency (GHz)

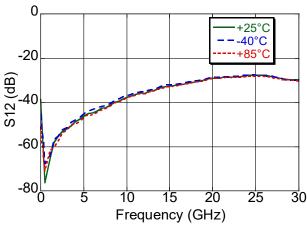
Input Return Loss

10

15

Frequency (GHz)

20

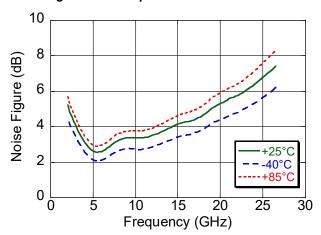

25

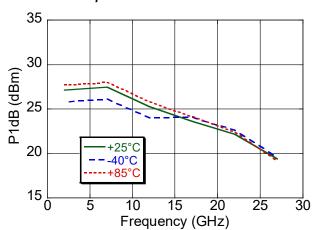
30

Output Return Loss

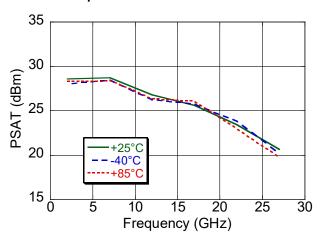
-30

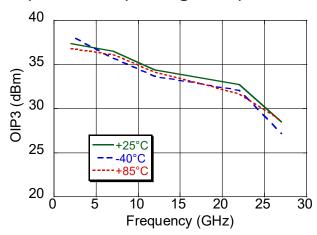
-40

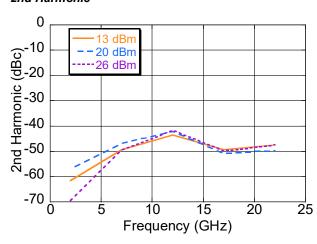


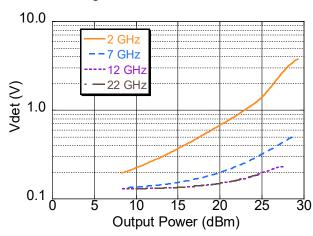

Rev. V1

Typical Performance Curves V_{DD} = 8 V, I_{DSQ} = 220 mA, V_{G} = -0.53 V typical


Noise Figure over Temperature


P1dB over Temperature


PSAT over Temperature

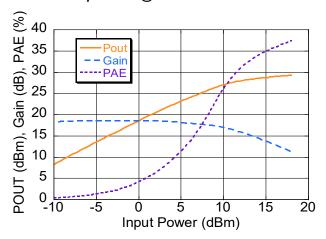

Output IP3 over Temperature @ 14 dBm per tone

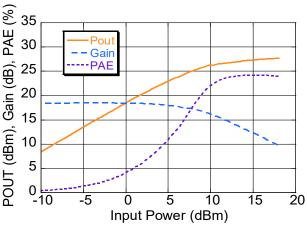
2nd Harmonic

Detected Voltage

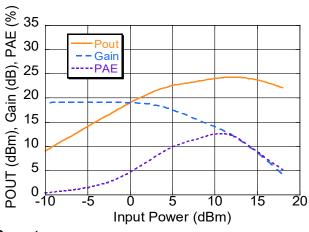
6

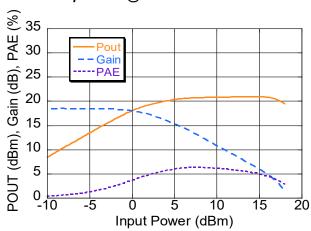
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

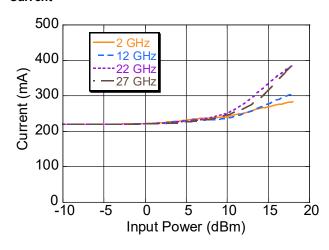

Visit www.macom.com for additional data sheets and product information.

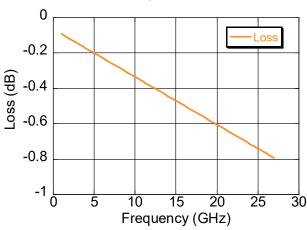

Rev. V1

Typical Performance Curves V_{DD} = 8 V, I_{DSQ} = 220 mA, V_{G} = -0.53 V typical


Power Compression @ 2 GHz


Power Compression @ 12 GHz

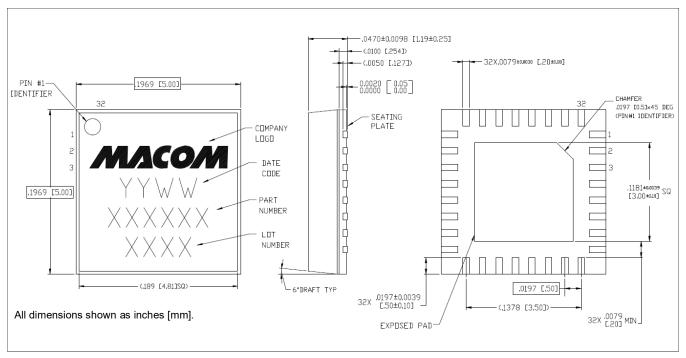

Power Compression @ 22 GHz


Power Compression @ 27 GHz

Current

Test Board Loss including Connector

7


MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

Rev. V1

Lead-Free 5 mm 32-lead AQFN Package[†]

[†] Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 3 requirements. Plating is NiPdAu.