Balanced Power Amplifier, 4 W 13.5 - 15.0 GHz

MAAP-011333-DIE

Rev. V1

Features

High Gain: 26 dB

P1dB: 37 dBm at 14 GHzP3dB: 37.8 dBm at 14 GHz

IM3 Level: -28 dBc @ P_{OUT} 28 dBm/tone
 Power Added Efficiency: 27% at P3dB

• Die Size: 2.5 x 3.0 x 0.1 mm

 Integrated Temperature Compensated Power Detector

Scratch Protection Die Coating

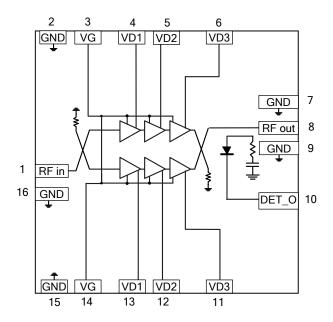
RoHS* Compliant

Applications

VSAT

Description

The MAAP-011333-DIE is a balanced 4 Watts power amplifier offered as a bare die part. This power amplifier operates from 13.5 to 15 GHz and provides 26 dB of linear gain and 4 W saturated output power with 27% efficiency while biased at 6 V.


The MAAP-011333-DIE can be used as a power amplifier stage or as a driver stage in higher power applications. This device is ideally suited for linear Ku-band VSAT communications.

This product is fabricated using a GaAs pHEMT process which features full passivation and scratch protection for enhanced reliability.

Ordering Information

Part Number	Package
MAAP-011333-DIE	Gel Pack
MAAP-011333-DIESMB	Sample Board

Functional Schematic

Pin Configuration¹

Pin#	Pin Name	Description
1	RF _{IN}	RF Input
2, 7, 9, 15, 16	GND	Ground
3, 14	V_{G}	Gate Voltage
4, 13	V _{D1}	Drain Voltage 1
5, 12	V_{D2}	Drain Voltage 2
6, 11	V _{D3}	Drain Voltage 3
8	RF _{OUT}	RF output
10	DET_O	Detector Output

Backside of die must be connected to RF, DC and thermal ground.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Rev. V1

Electrical Specifications: Freq. = 14 GHz, $T_A = +25$ °C, $V_D = +6$ V, $Z_0 = 50$ Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	P _{IN} = 0 dBm	dB	24	26	_
P _{OUT}	P _{IN} = +14 dBm	dBm	36	37.8	_
IM3 Level	P _{OUT} = 28 dBm / tone	dBc	_	28	_
Power Added Efficiency	P _{SAT} (P _{IN} = +14 dBm)	%	_	27	_
Input Return Loss	P _{IN} = -20 dBm	dB	_	17	_
Output Return Loss	P _{IN} = -20 dBm	dB	_	20	_
Quiescent Current	I _{DQ} (see bias conditions, page 4)	mA		1700	_
Current	P _{SAT} (P _{IN} = +14 dBm)	mA	_	3600	_

Maximum Operating Ratings

Parameter	Rating	
Input Power	P _{IN} ≤ 3 dB Compression	
Junction Temperature ^{2,3}	+160°C	
Operating Temperature	-40°C to +85°C	

- Operating at nominal conditions with junction temperature ≤ +160°C will ensure MTTF > 1 x 10⁶ hours.
- 3. Junction Temperature $(T_J) = T_C + \Theta_{JC} * ((V * I) (P_{out} P_{IN}))$ Typical thermal resistance $(\Theta_{JC}) = 3.63 °C/W$. a) For $T_C = +25 °C$

 T_J = +86.3°C @ 6 V, 3.84 A, P_{OUT} = 37.9 dBm, P_{IN} = 15 dBm b) For T_C = +85°C

 $T_J = 142.3$ °C @ 6 V, 3.42 A, $P_{OUT} = 36.8$ dBm, $P_{IN} = 15$ dBm

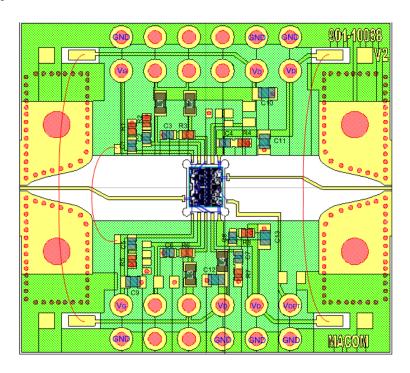
Handling Procedures

Please observe the following precautions to avoid damage:

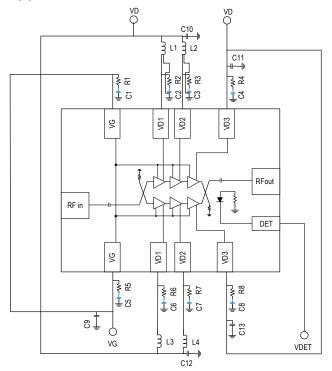
Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1A devices.

Absolute Maximum Ratings^{4, 5}


Parameter	Absolute Maximum
Input Power	+30 dBm
Drain Voltage	+6.5 V
Gate Voltage	-3 to 0 V
Junction Temperature ⁶	+175°C
Storage Temperature	-65°C to +150°C

- 4. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- Junction temperature directly effects device MTTF. Junction temperature should be kept as low as possible to maximize lifetime.



Rev. V1

Sample Board Layout

Application Schematic

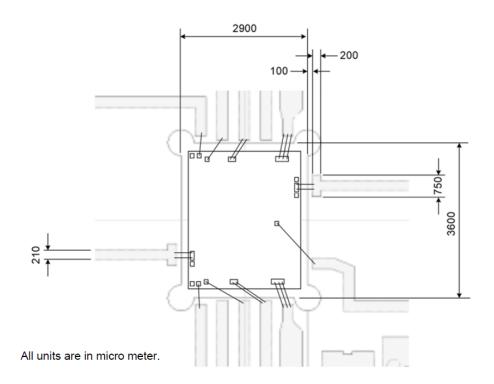
Parts List

Part	Value	Case Style
C1 - C8	0.01 μF	0402
C9 - C13	22 µF	0603
R1 - R8	10 Ω	0402
L1 - L4	Ferrite Bead MURATA BLM18HE601SN1D	0603

Sample Board Thru Loss

Refer to the plot on page 6 for sample board thru losses.

Sample Board Material Specifications


Top Layer: 1/2 oz Copper Cladding, 0.0175 mm thickness Dielectric Layer: Rogers RO4350B 0.101 mm thickness Bottom Layer: 1/2 oz Copper Cladding, 0.0175 mm thickness Finished overall thickness: 0.136 mm

Rev. V1

Recommended Bonding Diagram and PCB Details:

For optimum performance, RF input and output microstrip lines require open stubs on the application board for bonding wire inductance compensation. Optimum bonding wire inductance for the RF I/O connection is 0.2 nH and physical length for the 1 mil diameter gold wire is approximately 350 µm each for the two wire connection.

Biasing conditions

Recommended biasing conditions are $V_D = 6~V$, $I_{DQ} = 1.7~A$ (controlled with V_G). The drain bias voltage range is 4 to 6 V, and the quiescent drain current biasing range is 1.5 to 2.5 A.

 $V_{\rm G}$ pins 2 and 13 are internally connected; therefore, interconnection is not required. Muting can be accomplished by setting the $V_{\rm G}$ to the pinched off voltage ($V_{\rm G}$ = -2 V).

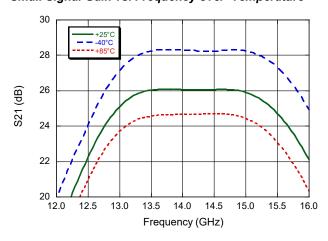
 V_D Bias must be applied to V_D1 , V_D2 and V_D3 pins from north and south sides. North V_D supplies and south V_D supplies are not connected internally.

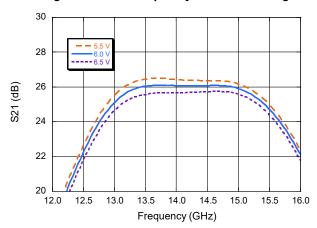
Operating the MAAP-011333-DIE

Turn-on

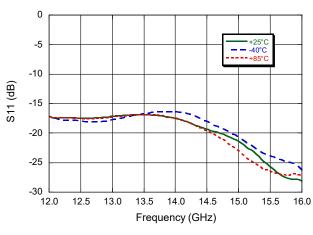
- 1. Apply V_G (-1.5 V).
- 2. Apply V_D (6.0 V typical).
- 3. Set I_{DQ} by adjusting V_G more positive (typically -0.9 to -1.0 V for I_{DQ} = 1.7 A).
- 4. Apply RF_{IN} signal.

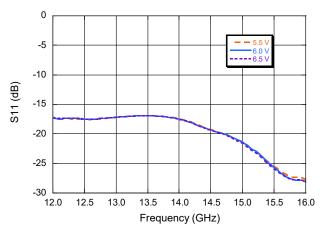
Turn-off

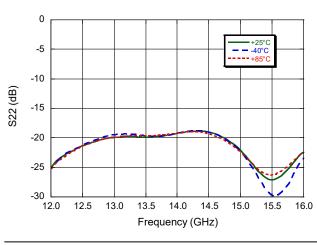

- 1. Remove RF_{IN} signal.
- 2. Decrease V_G to -1.5 V.
- 3. Decrease V_D to 0 V.

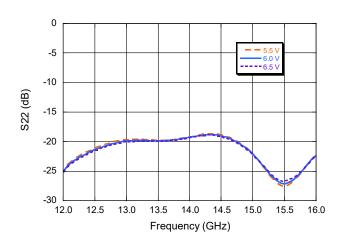

Rev. V1

Typical Performance Curves: $V_D = 6 \text{ V}$, $I_{DSQ} = 1700 \text{ mA}$


Small Signal Gain vs. Frequency over Temperature

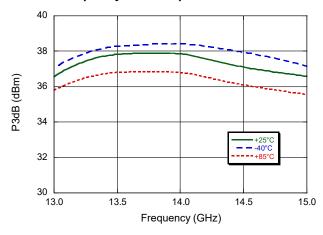

Small Signal Gain vs. Frequency over Bias Voltage

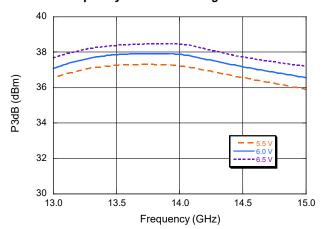

Input Return Loss vs. Frequency over Temperature


Input Return Loss vs. Frequency over Bias Voltage

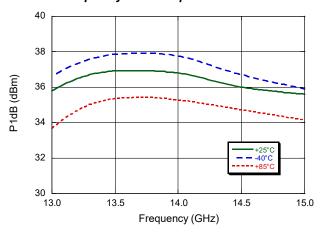
Output Return Loss vs. Frequency over Temperature

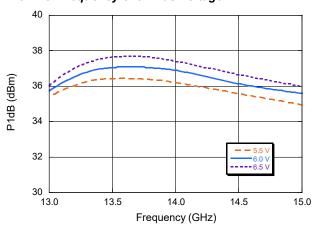
Output Return Loss vs. Frequency over Bias Voltage

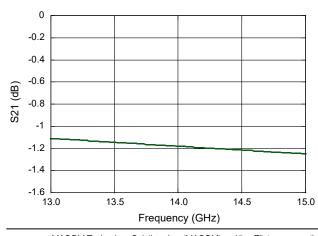



Rev. V1

Typical Performance Curves: $V_D = 6 \text{ V}$, $I_{DSQ} = 1700 \text{ mA}$


P3dB vs. Frequency over Temperature


P3dB vs. Frequency over Bias Voltage

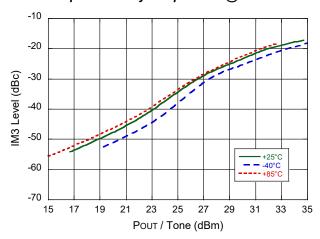

P1dB vs. Frequency over Temperature

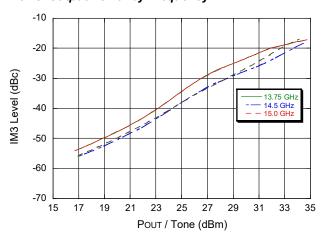
P1dB vs. Frequency over Bias Voltage

Sample Board Thru Loss Includes Two 2.4mm Connectors

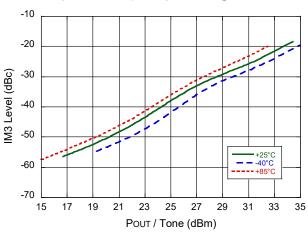
6

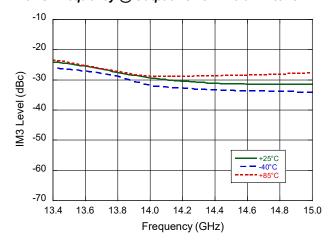
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

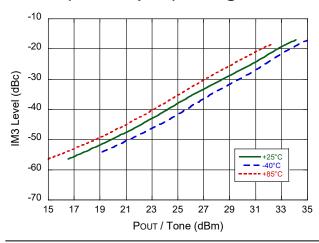

Visit www.macom.com for additional data sheets and product information.

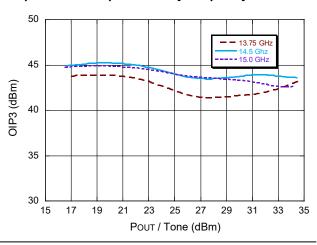

Rev. V1

Typical Performance Curves: $V_D = 6 V$, $I_{DSQ} = 1700 mA$


IM3 vs. Output Power by Temperature @ 13.75 GHz

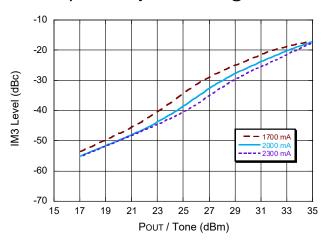

IM3 vs. Output Power by Frequency

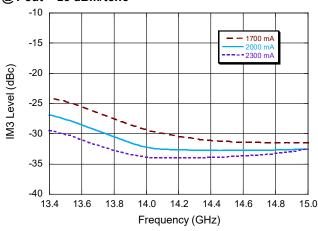

IM3 vs. Output Power by Temperature @ 14.5 GHz


IM3 vs. Frequency @ Output Power = 28 dBm/tone

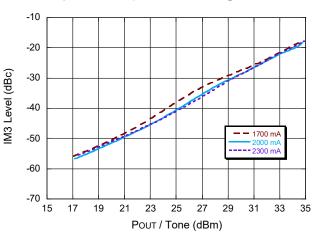
IM3 vs. Output Power by Temperature @ 15 GHz

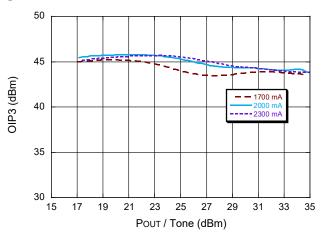
Output IP3 vs. Output Power by Frequency

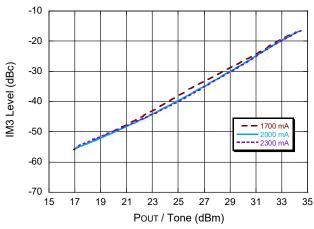



Rev. V1

Typical Performance Curves: V_D = 6 V

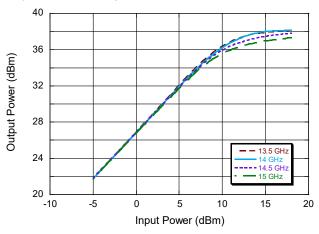

IM3 vs. Output Power by Drain Current @ 13.75 GHz

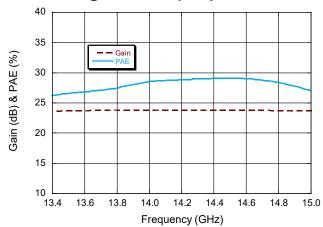

IM3 vs. Frequency by Drain Current @ Pout = 28 dBm/tone


IM3 vs. Output Power by Drain Current @ 14.5 GHz

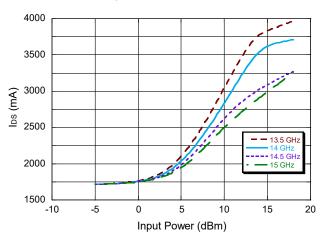
Output IP3 vs. Output Power by Drain Current @ 14.5 GHz

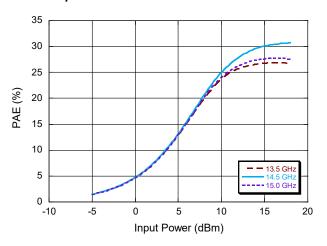
IM3 vs. Output Power by Drain Current @ 15 GHz

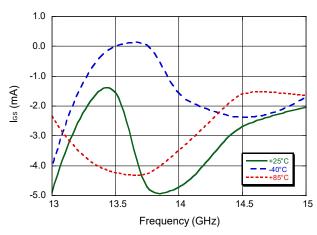


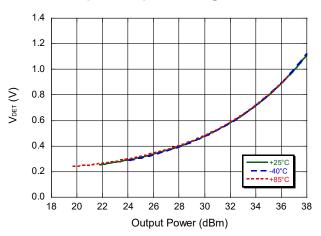

Rev. V1

Typical Performance Curves: V_D = 6 V, I_{DSQ} = 1700 mA

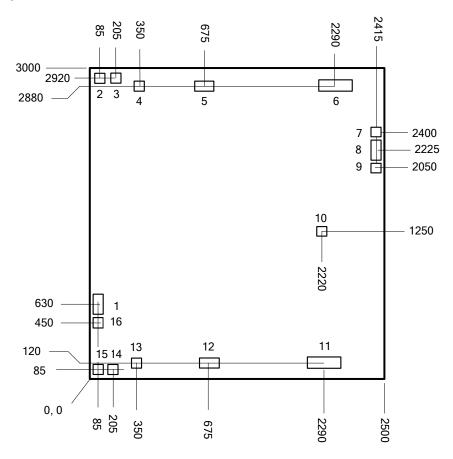

Output Power vs. Input Power


Gain and PAE @ P3dB vs. Frequency


Drain Current vs. Input Power


PAE vs. Input Power

Gate Current vs. Frequency @ PSAT


Detector Voltage vs. Output Power @ 14 GHz

Rev. V1

MMIC Die Outline^{7,8}

- 7. All units are in μ m, unless otherwise noted, with a tolerance of $\pm 5 \mu$ m.
- 8. Die thickness is $100 \pm 10 \mu m$.

Bond Pad Detail⁹

Pad	Size (x)	Size (y)
1, 8	100	200
3, 14	90	90
4, 13	100	100
5, 12	160	100
6, 11	240	100
10	75	75

9. Pin 2, 7, 9, 15, and 16 are not in use.