0.5 W Ka-Band Power Amplifier 27 - 31.5 GHz

MAAP-011341

Rev. V1

Features

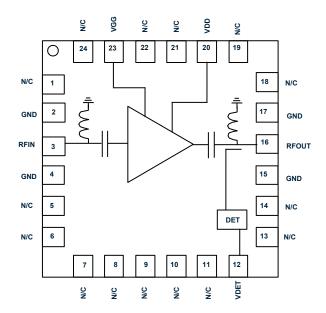
- 28 dB Gain
- 36 dBm Output IP3
- 27 dBm P1dB
- 28 dBm P3dB
- 5.5 V Drain Supply
- 4 mm, 24 lead AQFN Package
- RoHS* Compliant

Applications

Satellite Communications

Description

The MAAP-011341 is a 1/2 W Ka-band power amplifier. The PA has a 27 dBm typical P1dB and a 28 dBm typical P3dB with 28 dB of gain. The drain bias supply is 5.5 V. The gate voltage is adjusted to set the drain current to 450 mA.


The MAAP-011341 is designed for medium power applications in the 27 - 31.5 GHz band. The 4 mm, 24 lead AQFN package is lead free and RoHS compliant.

It is also available as a bare DIE product under part number MAAP-011341-DIE.

Ordering Information

Part Number	Package
MAAP-011341-TR1000	1000 Piece Reel
MAAP-011341-TR3000	3000 Piece Reel
MAAP-011341-SMB	Sample Board

Block Diagram

Pin Configuration^{1,2}

Pin #	Pin Name	Description
1,5-11, 13, 14, 18, 19, 21, 22, 24	N/C	No Connect
2,4,15,17	GND	Ground
3	RF _{IN}	RF Input
12	V_{DET}	Detector Voltage
16	RF _{out}	RF Output
20	V_{DD}	Drain Voltage
23	V_{GG}	Gate Voltage

- 1. It is recommended that all NC (No Connect) pins be grounded.
- 2. The exposed pad centered on the package bottom must be connected to RF, DC, and thermal ground.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MAAP-011341

Rev. V1

Electrical Specifications: V_{DD} = +5.5 V, IDQ = 450 mA, T_A = 25°C, Z_0 = 50 Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	27 - 31.5 GHz	dB	24.5	28	_
Gain Flatness	27 - 31.5 GHz	dB	_	0.5	_
Input Return Loss	27 - 31.5 GHz	dB	_	10	_
Output Return Loss	27 - 31.5 GHz	dB	_	10	_
P1dB	27 - 31.5 GHz	dBm	_	27	_
P3dB	27 - 31.5 GHz	dBm	_	28	_
Роит	27 GHz, P_{IN} = 4.0 dBm 31.5 GHz, P_{IN} = 3.5 dBm	dBm	26.5 26.0	28.0 27.5	_
IP3	27 - 31.5 GHz, P _{OUT} = 16 dBm/tone 10 MHz	dBm	_	36	
Noise Figure	27 - 31.5 GHz	dB	_	5	_
V _{DET}	3 dBm Output Power 27 dBm Output Power	V	_	0.1 1.5	_

Maximum Operating Conditions

Parameter	Maximum
Input Power	8 dBm
V_{DD}	+6 V
V_{GG}	-3 to 0 V
Junction Temperature ^{3,4}	+160°C
Operating Temperature	-40°C to +85°C

- 3. Operating at nominal conditions with $T_J \le +160^{\circ} C$ will ensure MTTF > 1 x 10^6 hours.
- 4. TX Junction Temp. $(T_J) = T_C + \Theta jc * ((V * I) (P_{OUT} P_{IN}))$. Typical TX thermal resistance $(\Theta jc) = 29.3^{\circ}C/W$.
 - a) For $T_C = +85^{\circ}C$ and 31 GHz,

 T_J = 148°C @ 5.5 V, 460 mA, P_{OUT} = 26 dBm, P_{IN} = 4.5 dBm b) For T_C = +25°C and 31 GHz,

 $T_J = 83$ °C @ 5.5 V, 460 mA, $P_{OUT} = 27.5$ dBm, $P_{IN} = 3.5$ dBm

Bias Sequence

All gate voltages must be applied prior to applying drain voltages.

- 1. Apply V_{GG} (about -1.5 V) to pin 23.
- 2. Apply V_{DD} (+5.5 V) to pin 20.
- 3. Adjust V_{GG} to set I_{DQ} to 450 mA.

Shut down by setting $V_{DD} = 0 \text{ V}$ first.

Absolute Maximum Ratings^{5,6}

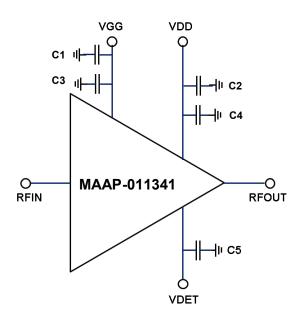
Parameter	Absolute Maximum
Input Power	10 dBm
V _{DD}	+6.5 V
V_{GG}	-5 to 0 V
Junction Temperature ⁷	+180°C
Storage Temperature	-55°C to +150°C

- 5. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- Junction temperature directly effects device MTTF. Junction temperature should be kept as low as possible to maximize lifetime.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity


These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1B devices.

MAAP-011341

Rev. V1

Application Schematic

Parts List

Part #	Value	Case Style	
C1, C2	10 µF	1210	
C3, C4	1000 pF	0402	
C5	1 μF	0402	
J1, J2	100-mil pitch double row DC header		
J3 - J6	Southwest 2.4 mm, 5 mil pin diameter		

Recommended PCB Information

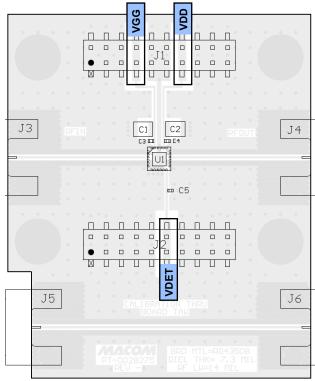
RF input and output are 50 Ω transmission lines on single layer 7.3 mil Rogers RO4350B LoPro with 1.5 oz. Cu. For best thermal management, use as many copper filled vias under the device as physically possible. The filled vias should be plated over. 8 mil diameter vias in a 5 x 5 array are used on this sample board.

PCB Layout Stack-Up

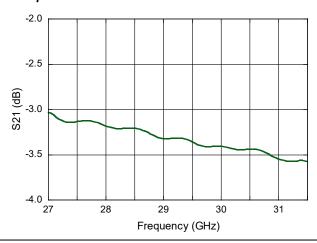
BOARD DIELECTRIC / COPPER STACKUP
FINISHED BOARD THICKNESS
(EXCLUDING PRIMARY SOLDERMASK)

PRIMARY SOLDERMASK (POSITIVE IMAGE)

1 oz Cu. PLATING (PRIMARY LAYER)

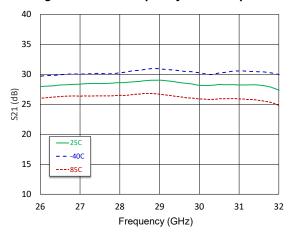

11.5 +/- 10%

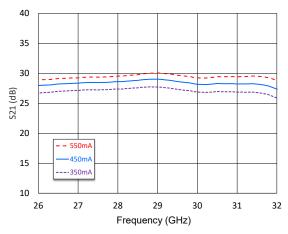
R04350B LoPro FOIL (PRIMARY LAYER)


1 oz Cu. PLATING (SECONDARY LAYER)

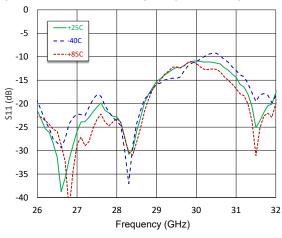
Finished board thickness is in mils

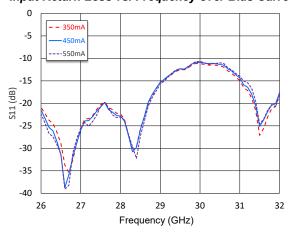
Sample Board Layout

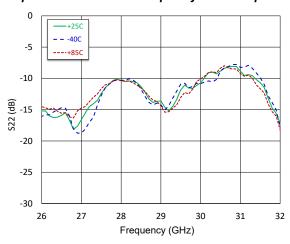

Sample Board Thru Line Loss

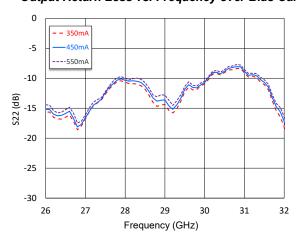


Typical Performance Curves: $V_{DD} = 5.5 \text{ V}$, $I_{DQ} = 450 \text{ mA}$


Small Signal Gain vs. Frequency over Temperature


Small Signal Gain vs. Frequency over Bias Current

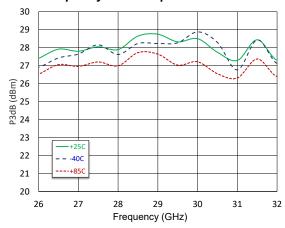

Input Return Loss vs. Frequency over Temperature


Input Return Loss vs. Frequency over Bias Current

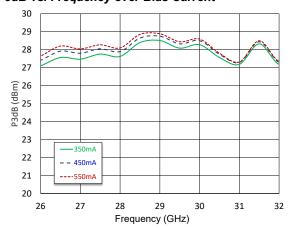
Output Return Loss vs. Frequency over Temperature

Output Return Loss vs. Frequency over Bias Current

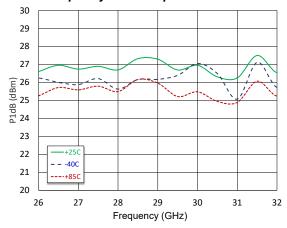
4

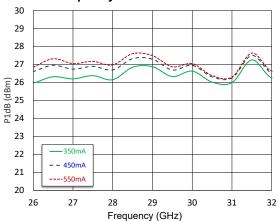

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

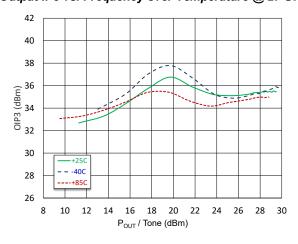


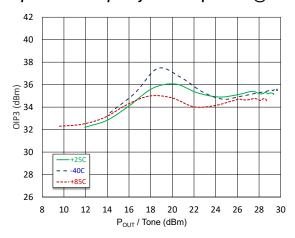
Typical Performance Curves: $V_{DD} = 5.5 \text{ V}$, $I_{DQ} = 450 \text{ mA}$


P3dB vs. Frequency over Temperature

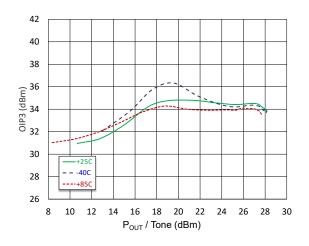

P3dB vs. Frequency over Bias Current

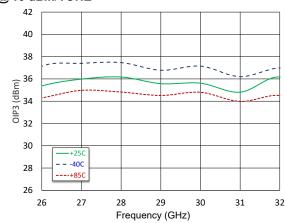
P1dB vs. Frequency over Temperature


P1dB vs. Frequency over Bias Current

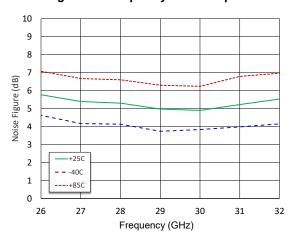


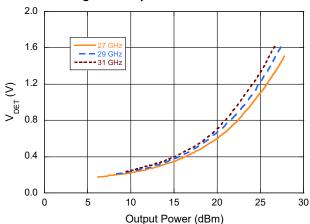
Typical Performance Curves: $V_{DD} = 5.5 \text{ V}$, $I_{DQ} = 450 \text{ mA}$


Output IP3 vs. Frequency over Temperature @ 27 GHz

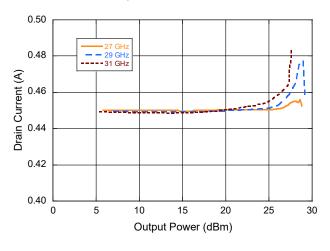

Output IP3 vs. Frequency over Temperature @ 29 GHz

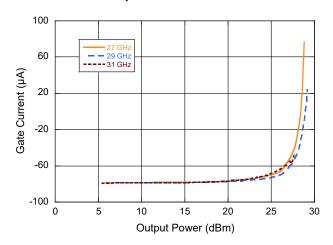
Output IP3 vs. Frequency over Temperature @ 31 GHz

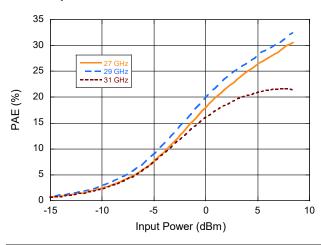

Output IP3 vs. Frequency over Temperature @ 19 dBm/TONE



Typical Performance Curves: $V_{DD} = 5.5 \text{ V}$, $I_{DQ} = 450 \text{ mA}$

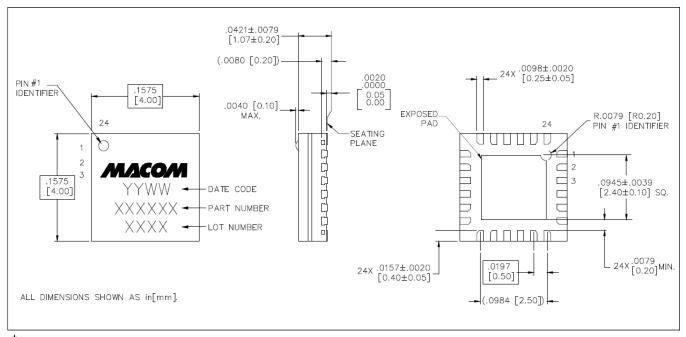

Noise Figure vs. Frequency over Temperature


Detector Voltage vs. Output Power


Drain Current vs Output Power

Gate Current vs Output Power

PAE vs Input Power


7

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

Lead-Free 4 mm 24-Lead AQFN Package[†]

Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 3 requirements. Plating is NiPdAuAg