

MAC4DCM, MAC4DCN

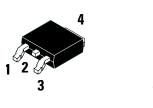
Description

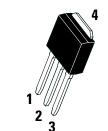
The MAC4DCM and MAC4DCN are designed for high volume, low cost, industrial and consumer applications such as motor control; process control; temperature, light and speed control.

Features

- Small Size Surface Mount
 DPAK Package
- Passivated Die for Reliability and Uniformity
- Blocking Voltage to 800 V
- On-State Current Rating of 4.0 A RMS at 108°C
- High Immunity to dv/dt 500 V/µs at 125°C
- High Immunity to di/dt 6.0 A/ms at 125°C

Functional Diagram




• Epoxy Meets UL 94 V-0 @ 0.125 in

Po

- ESD Ratings: Human Body Model, 3B > 8000V Machine Model, C > 400V
- Lead-free Packages are Available

Pin Out

Maximum Ratings (T = 25°C unless otherwise noted)

Rating		Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1) (Gate Open, Sine Wave 50 to 60 Hz, $T_{J} = -40^{\circ}$ to 125°C)	MAC4DCM MAC4DCN	V _{drm} , V _{rrm}	600 800	V
On-State RMS Current (Full Cycle Sine Wave, 60 Hz, $T_c = 108^{\circ}$ C)	I _{T (RMS)}	4.0	А	
Peak Non-Repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, T_c = 125°C)		I _{TSM}	40	А
Circuit Fusing Consideration (t = 8.3 msec)		l²t	6.6	A ² sec
Peak Gate Current (Pulse Width \leq 20 µsec, T _c = 108°C)	I _{GM}	4.0	А	
Peak Gate Power (Pulse Width \leq 10 µsec, T _c = 108°C)		P _{GM}	2.0	W
Average Gate Power (t = 8.3 msec, T_c = 108°C)		P _{G(AV)}	1.0	W
Operating Junction Temperature Range		Tj	-40 to +125	°C
Storage Temperature Range		T _{stg}	-40 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the

Recommended Operating Conditions may affect device reliability. 1. V_{pend} and V_{Rem} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

Thermal Characteristics						
	Rating	Symbol	Value	Unit		
Thermal Resistance,	Junction-to-Case (AC) Junction-to-Ambient Junction-to-Ambient (Note 2)	Re _{jc} Re _{jA} Re _{jA}	3.5 88 80	°C/W		
Maximum Lead Temperature for Sold	ering Purposes, 1/8" from case for 10 seconds	T,	260	°C		

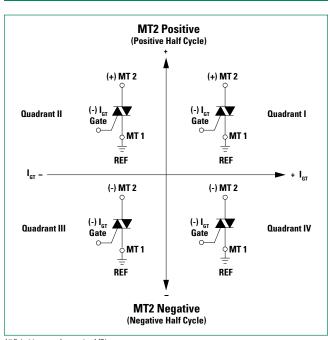
These ratings are applicable when surface mounted on the minimum pad sizes recommended.
 1/8" from case for 10 seconds.

Electrical Characteristics - OFF (T _J = 25°C unless otherwise noted ; Electricals apply in both directions)							
Characteristic		Symbol	Min	Тур	Мах	Unit	
Peak Repetitive Blocking Current	T_ = 25°C	I _{DRM} ,	-	-	0.005	mA	
$(V_{D} = V_{DRM} = V_{RRM}; \text{ Gate Open})$	T_ = 110°C	I _{RRM}	-	-	2.0	ma	

Electrical Characteristics - ON (T, = 25°C unless otherwise noted; Electricals apply in both directions)

Characteristic		Symbol	Min	Тур	Мах	Unit
Peak On–State Voltage (Note 4) ($I_{TM} = \pm 6.0 \text{ A}$)		V _{TM}	-	1.3	1.6	V
Gate Trigger Current	MT2(+), G(+)		8.0	12	35	
(Continuous dc)	MT2(+), G(-)	I _{GT}	8.0	18	35	mA
$(V_{\rm D} = 12 \text{ V}, \text{ R}_{\rm L} = 100 \Omega)$	MT2(-), G(-)		8.0	22	35	
Holding Current ($V_p = 12 V$, Gate Open, Initiating Current = ±200 mA)		I _H	6.0	22	35	mA
	MT2(+), G(+)	IL	-	30	60	
Latching Current ($V_p = 12 \text{ V}, I_q = 35 \text{ mA}$)	MT2(+), G(-)		_	50	80	mA
$(v_{\rm D} - 12), r_{\rm G} - 50000000$	MT2(-), G(-)		_	20	60	-
Gate Trigger Voltage	MT2(+), G(+)	V _{GT}	0.5	0.8	1.3	
(Continuous dc)	MT2(+), G(-)		0.5	0.8	1.3	V
$(V_{_{D}} = 12 \text{ V}, \text{ R}_{_{L}} = 100 \Omega)$	MT2(-), G(-)		0.5	0.8	1.3	
Gate Non-Trigger Voltage	MT2(+), G(+)		0.2	0.4	_	
$(T_{\rm J} = 125^{\circ}{\rm C})$ $(V_{\rm D} = 12 \text{ V}, \text{ R}_{\rm L} = 100 \Omega)$	MT2(+), G(-)	V _{gD}	0.2	0.4	_	V
	MT2(-), G(-)		0.2	0.4	_	

4. Indicates Pulse Test: Pulse Width ≤ 2.0 ms, Duty Cycle $\leq 2\%$.



Dynamic Characteristics						
Characteristic	Symbol	Min	Тур	Мах	Unit	
Rate of Change of Commutating Current ($V_{\rm D} = 400 \text{ V}, \text{ I}_{\rm TM} = 4.0 \text{ A}, \text{ Commutating dv/dt} = 18 \text{ V/}\mu\text{sec},$ Gate Open, $\text{T}_{\rm J} = 125^{\circ}\text{C}, \text{ f} = 250 \text{ Hz}, \text{ C}_{\rm L} = 5.0 \mu\text{F}, \text{ LL} = 20 \text{ mH}, \text{ No Snubber}$) (See Figure 16)	(dl/dt)c	6.0	8.4	-	A/ms	
Critical Rate of Rise of Off-State Voltage ($V_D = 0.67 \times V_{DRM}$, Exponential Waveform, Gate Open, $T_J = 125^{\circ}C$)	dV/dt	500	1700	-	V/µs	

Voltage Current Characteristic of SCR

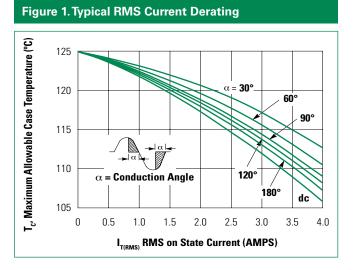
Quadrant Definitions for a Triac

Symbol	Parameter
V _{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
I _H	Holding Current

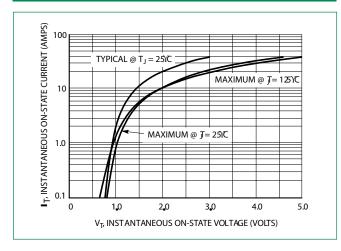
On State

+Current

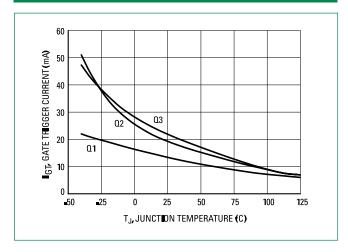
V_™

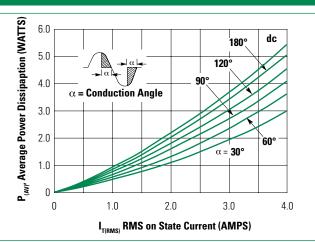

Quadrant 1

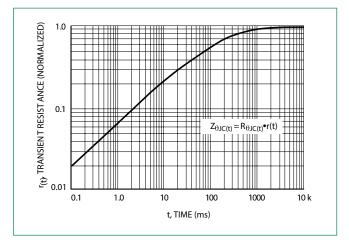
Main Terminal 2+

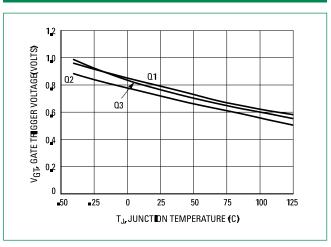

All Polarities are referenced to MT1.

With in-phase signals (using standard AC lines) quadrants I and III are used




Figure 3. On-State Characteristics


Figure 5. Typical Gate Trigger Current vs, Junction Temperature


Figure 2. On-State Power Dissipation

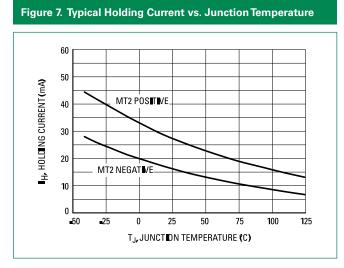

Figure 4. Transient Thermal Response

Figure 6. Typical Gate Trigger Voltage vs. Junction Temperature

Figure 9. Exponential Static dv/dt vs. Gate-MT1 Resistance, MT2(+)

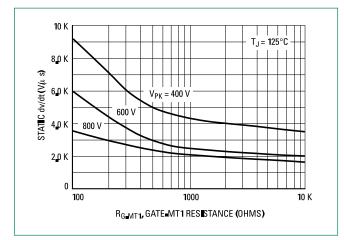
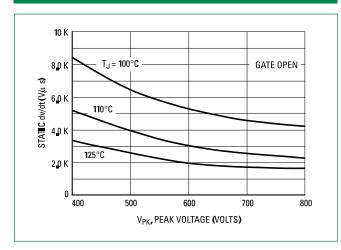
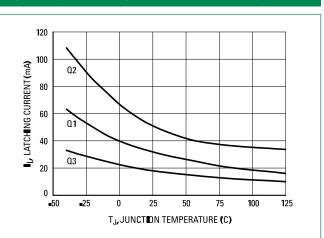


Figure 11. Exponential Static dv/dt vs. Peak Voltage, MT2(+)

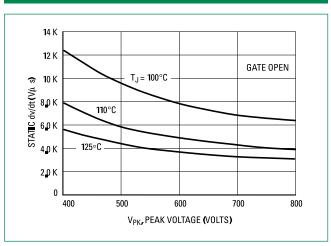
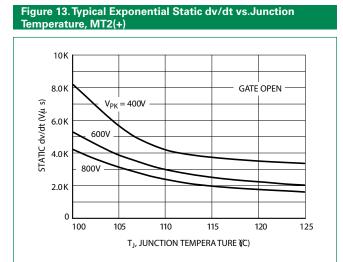
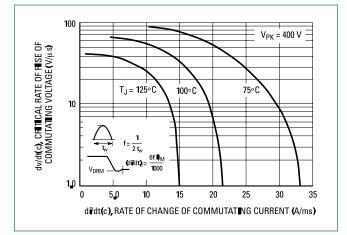
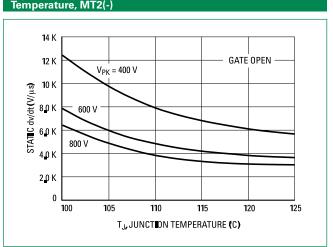

Figure 8. Typical Latching Current vs. Junction Temperature

Figure 10. Exponential Static dv/dt vs. Gate-MT1 Resistance, MT2(-)

Figure 9. Exponential Static dv/dt vs. Peak Voltage, MT2(-)

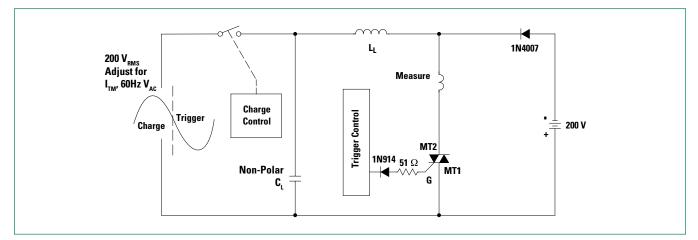
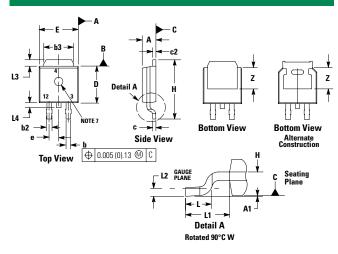
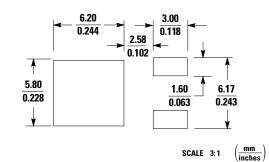

Figure 15. Critical Rate of Rise of Commutating Voltage

Figure 13. Typical Exponential Static dv/dt vs.Junction Temperature, MT2(-)


Figure 16. Simplified Test Circuit to Measure the Critical Rate of Rise of Commutating Current (di/dt)


Note: Component values are for verification of rated (di/dt)c. See AN1048 for additional information

Dimensions

Soldering Footprint

Dim	Inc	hes	Millimeters		
Dim	Min	Max	Min	Max	
Α	0.087	0.094	2.20	2.40	
A1	0.000	0.005	0.00	0.12	
b	0.022	0.030	0.55	0.75	
b2	0.026	0.033	0.65	0.85	
b3	0.209	0.217	5.30	5.50	
C	0.019	0.023	0.49	0.59	
c2	0.019	0.023	0.49	0.59	
D	0.213	0.224	5.40	5.70	
Е	0.252	0.260	6.40	6.60	
е	0.0	91	2.30		
н	0.374	0.406	9.50	10.30	
L	0.058	0.070	1.47	1.78	
L1	0.1	14	2.9	90	
L2	0.019	0.023	0.49	0.59	
L3	0.053	0.065	1.35	1.65	
L4	0.028	0.039	0.70	1.00	
Z	0.154	-	3.90	-	