

MAGE-100809-500G00

Rev. V1

Features

- Suitable for Linear and Saturated Applications
- Pair of Isolated, Symmetric Amplifiers
- CW and Pulsed Operation: 500 W Output Power
- Internally Pre-Matched
- 260°C Reflow Compatible
- 50 V Operation
- 100% RF Tested
- RoHS* Compliant

Description

The MAGE-100809-500G00 is a high power GaN on Si HEMT D-mode amplifier designed for 500 W peak power and optimized for 896 - 928 MHz frequency operation. This device supports both CW and pulsed operation with output power levels of at least 500 W (57 dBm) in an air cavity ceramic package.

The MAGE-100809-500G00 is ideally suited for CW applications as a highly efficient, precise heat and power source. The wide range of applications includes solid state cooking, RF plasma generation, material drying, industrial heating, automotive ignition, lighting and medical.

Typical Performance:

• $V_{DS} = 50 \text{ V}, \text{ I}_{DQ} = 150 \text{ mA}, \text{ T}_{C} = 25^{\circ}\text{C}.$ One side measured under load-pull at 2.5 dB Compression, 100 µs pulse width, 10% duty cycle.

Frequency (MHz)	Output Power ¹ (dBm)	Gain ² (dB)	η _D ² (%)
896	56.8	18.9	78
915	56.6	18.7	76.8
928	56.7	18.7	78

1. Load impedance tuned for maximum output power.

2. Load impedance tuned for maximum drain efficiency.

Ordering Information

Part Number	Package
MAGE-100809-500G00	Bulk Quantity
MAGE-100809-500GT0	Tape and Reel
MAGE-1C0809-500G00	Sample Board

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Functional Schematic

Pin Configuration

Pin #	Pin Name	Function
1	$\mathrm{RF}_{\mathrm{IN}}$ / V_{G1}	RF Input / Gate
2	RF _{OUT} / V _{D1}	RF Output / Drain
3	$\mathrm{RF}_{\mathrm{IN}}$ / V_{G2}	RF Input / Gate
4	RF _{OUT} / V _{D2}	RF Output / Drain
5	Flange ³	Ground / Source

3. The flange on the package bottom must be connected to RF, DC and thermal ground.

Rev. V1

RF Electrical Characteristics: $T_c = 25^{\circ}C$, $V_{DS} = 50 V$, $I_{DQ} = 150 mA$ Note: Performance in MACOM Evaluation Test Fixture, 50 Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Small Signal Gain	Pulsed ⁴ , 928 MHz	G _{SS}	-	20.6	-	dB
Power Gain	Pulsed ⁴ , 928 MHz, 2.5 dB Gain Compression	G _{SAT}	-	18	-	dB
Saturated Drain Efficiency	Pulsed ⁴ , 928 MHz, 2.5 dB Gain Compression	η_{SAT}	-	76.3	-	%
Saturated Output Power	Pulsed ⁴ , 928 MHz, 2.5 dB Gain Compression	P _{SAT}	-	58	-	dBm
Gain Variation (-40°C to +85°C)	Pulsed ⁴ , 928 MHz	ΔG	-	0.01	-	dB/°C
Power Variation (-40°C to +85°C)	Pulsed ⁴ , 928 MHz	$\Delta P2.5 dB$	-	0.01	-	dBm/°C
Power Gain	Pulsed ⁴ , 928 MHz, P _{IN} = 39.2 dBm	G _P	-	18.5	-	dB
Drain Efficiency	Pulsed ⁴ , 928 MHz, P _{IN} = 39.2 dBm	η	-	73.6	-	%
Input Return Loss	Pulsed ⁴ , 928 MHz, P _{IM} = 39.2 dBm	IRL	-	-11.6	-	dB
Ruggedness: Output Mismatch	All phase angles		VSWF Dama	R = 10:1 ge	, No D	evice

RF Electrical Specifications: $T_A = 25^{\circ}C$, $V_{DS} = 50 V$, $I_{DQ} = 150 mA$ Note: Performance in MACOM Production Test Fixture, 50 Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Power Gain	Pulsed ⁴ , 928 MHz, 2.5 dB Gain Compression	G _{SAT}	16.0	17.2	-	dB
Saturated Drain Efficiency	Pulsed ⁴ , 928 MHz, 2.5 dB Gain Compression	η_{SAT}	69.8	75.2	-	%
Saturated Output Power	Pulsed ⁴ , 928 MHz, 2.5 dB Gain Compression	P _{SAT}	57.4	58.1	-	dBm
Gain	Pulsed ⁴ , 928 MHz, P _{IN} = 39.2 dBm	G₽	17.1	18.4	-	dB
Drain Efficiency	Pulsed ⁴ , 928 MHz, P _{IN} = 39.2 dBm	η	65.6	71.0	-	%
Input Return Loss	$Pulsed^4$, 928 MHz, P_{IN} = 39.2 dBm	IRL	-	-9.6	-5	dB

4. Pulse details: 100 µs pulse width, 10% Duty Cycle.

DC Electrical Characteristics: (Per Each Side of Symmetric Device) T_A = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Drain-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 130 V	I _{DLK}	-	-	58	mA
Gate-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 0 V	I _{GLK}	-	-	58	mA
Gate Threshold Voltage	V_{DS} = 50 V, I_{D} = 58 mA	V _T	-2.6	-2.2	-	V
Gate Quiescent Voltage	V _{DS} = 50 V, I _D = 150 mA	V _{GSQ}	-2.4	-2.13	-1.4	V
On Resistance	V_{GS} = 2 V, I_{D} = 435 mA	R _{ON}	-	0.08	-	Ω
Maximum Drain Current	V _{DS} = 7 V, pulse width 300 μs	I _{D, MAX}	-	33.8	-	А

²

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Rev. V1

Absolute Maximum Ratings (Per Each Side of Symmetric Device)^{5,6,7,8,9}

Parameter	Absolute Maximum
Drain Source Voltage, V _{DS}	130 V
Gate Source Voltage, V _{GS}	-10 to 3 V
Gate Current, I _G	58 mA
Storage Temperature Range	-65°C to +150°C
Case Operating Temperature Range	-40°C to +85°C
Channel Operating Temperature Range, T _{CH}	-40°C to +225°C
Absolute Maximum Channel Temperature	+250°C

Exceeding any one or combination of these limits may cause permanent damage to this device. 5.

MACOM does not recommend sustained operation above maximum operating conditions. 6.

7

8.

Operating at drain source voltage $V_{DS} < 55$ V will ensure MTTF > 1 x 10⁷ hours. Operating at nominal conditions with $T_{CH} \le 225^{\circ}$ C will ensure MTTF > 1 x 10⁷ hours. MTTF may be estimated by the expression MTTF (hours) = A $e^{[B + C/(T+273)]}$ where *T* is the channel temperature in degrees Celsius, 9. A = 3.686, B = -35.00, and C = 25,416.

Thermal Characteristics¹⁰

Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance using Finite Element Analysis	V _{DS} = 50 V T _C = 85°C,T _{CH} = 225°C	R ₀ (FEA)	0.41	°C/W
Thermal Resistance using Infrared Measurement of Die Surface Temperature	V _{DS} = 50 V T _C = 85°C,T _{CH} = 225°C	R _θ (IR)	0.33	°C/W

10. Case temperature measured using thermocouple embedded in heat-sink. Contact local applications support team for more details on this measurement.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1C, CDM Class C3 devices.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

Rev. V1

Pulsed⁴ Load-Pull Performance (Per Each Side of Symmetric Device) Reference Plane at Device Leads

		Maximum Output Power					
		V_{DS} = 50 V, I_{DQ} = 150 mA, T_{C} = 25°C, P2.5dB					
Frequency (MHz)	Z _{SOURCE} (Ω)	Z _{LOAD} ¹¹ (Ω)	Gain (dB)	Р _{оит} (dBm)	Р _{оит} (W)	η₀ (%)	АМ/РМ (°)
896	2.3 - j3.0	1.3 + j0.0	17.3	56.8	478.6	66	22.3
915	2.6 - j3.1	1.3 + j0.0	17.5	56.6	457.1	66	15.2
928	2.8 - j2.8	1.3 + j0.1	17.1	56.7	467.7	64.6	10.3

		Maximum Drain Efficiency						
		V _{DS} = 50 V, I _{DQ} = 150 mA, T _C = 25°C, P2.5dB						
Frequency (MHz)	Z _{SOURCE} (Ω)	Z _{LOAD} ¹² (Ω)	Gain (dB)	Р _{оит} (dBm)	Р _{оит} (W)	η₀ (%)	АМ/РМ (°)	
896	2.9 - j3.1	1.7 + j1.3	18.9	54.8	302	78	-2.9	
915	3.3 - j3.0	1.9 + j1.4	18.7	54.6	288.4	76.8	-16.7	
928	3.6 - j2.6	1.8 + j1.4	18.7	54.4	275.4	78	-22.1	

Impedance Reference

Z_{SOURCE} = Measured impedance presented to the input of the device at package reference plane.

Z_{LOAD} = Measured impedance presented to the output of the device at package reference plane.

11. Load Impedance for optimum output power.

12. Load Impedance for optimum efficiency.

MAGE-100809-500G00 Rev. V1

Pulsed⁴ Load-Pull Performance (Per Each Side of Symmetric Device) 928 MHz

P2.5dB Loadpull Output Power Contours (dBm)

Gain vs. Output Power

P2.5dB Loadpull Drain Efficiency Contours (%)

P2.5dB Loadpull AM/PM Contours (°)

Drain Efficiency vs. Output Power

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Evaluation Test Fixture and Recommended Tuning Solution 896 - 928 MHz

Description

Parts measured on evaluation board (30-mil thick RO6035HTC). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Bias Sequencing Turning the device ON

- 1. Set V_{GS} to pinch-off (V_P).
- 2. Turn on V_{DS} to nominal voltage (50 V).
- 3. Increase V_{GS} until I_{DS} current is reached.
- 4. Apply RF power to desired level.

Turning the device OFF

- 1. Turn the RF power OFF.
- 2. Decrease V_{GS} down to V_{P} .
- 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS} .

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Rev. V1

Evaluation Test Fixture and Recommended Tuning Solution 896 - 928 MHz

$[\circ \circ$									
Reference Designator	Value	Tolerance	Manufacturer	Part Number					
C1, C11	10 µF	+/- 10 %	Murata	GRM32EC72A106KE05L					
C2, C12	1 µF	+/- 10 %	Murata	GRM31CR72105KA01L					
C3, C4, C5	33 pF	+/- 5 %	PPI	0805N330JW251X					
C6	68 pF	+/- 5 %	PPI	0805N680JW251X					
C7	6.8 pF	+/- 0.1 pF	PPI	0805N6R8BW251X					
C8	5.6 pF	+/- 0.1 pF	PPI	0805N5R6BW251X					
C9,C10	12 pF	+/- 5 %	PPI	0805N120JW251X					
C13, C14, C17	12 pF	+/- 5 %	PPI	1111N120FW501XT					
C15, C18	6.8 pF	+/- 0.1 pF	PPI	1111N6R8FW501XT					
C16, C19	6.2 pF	+/- 0.1 pF	PPI	1111N6R2FW501XT					
C20	1.1 pF	+/- 0.1 pF	PPI	1111N1R1FW501XT					
C21	5.1 pF	+/- 0.1 pF	PPI	1111N5R1FW501XT					
C22	68 pF	+/- 5 %	PPI	0708N680JW501T					
R1, R2	100 Ω	+/- 1 %	Vishay	CRCW0805100RFKEAC					
R3	5.1 Ω	+/- 1 %	Vishay	CRCW08055R10FKEA					
R4, R7	10 Ω	+/- 1 %	Viking	CR-05FL7-10R					
R5, R6	5 mΩ	+/- 1 %	Susumu	RL7520WT-R005-F					
Q1	MAC	OM GaN Powe	r Amplifier	MAGE-100809-500G00					
PCB	RO6035HTC, 30 mil, 2 oz. Cu, Au Finish								

7

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

MAGE-100809-500G00

Rev. V1

Gain vs. Output Power and IDQ

Drain Efficiency vs. Output Power and V_{DS}

80 150 mA 70 — — 300 mA 450 mA (%) 60 Drain Efficiency 50 40 30 20 10 0 40 45 50 55 60 Output Power (dBm)

8

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Ef

MAGE-100809-500G00 Rev. V1

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Rev. V1

Lead-Free AC-780S-4 Package Dimensions[†] 2X .107 [2.72] X 45 DEG. .005±0.001 [0.13±0.03] DRAIN DRAIN $.370 \pm .005$.385±.005 [9.40±0.13] [9.78±0.13] .765±.010 [19.43±0.25] GATE GATE SOURCE 4X .150±.005 [3.81±0.13] 2X .500±.005 [12.70±0.13] 4X .190±.010 [4.83±0.25] .142±.010 .780±.005 [3.61±0.25] [19.82±0.13] .810±.005 [20.57±0.13] .040±.005 .062±.005 $[1.02\pm0.13]$ [1.58±0.13] NOTES: ALL DIMENSIONS SHOWN AS INEMM]. CONTROLLING DIMENSIONS ARE IN IN AND 1. CONVERTED MM DIMENSIONS ARE NOT NECESSARILY EXACT. LEAD FINISH: AU 2. FLANGE FINISH: AU З. LID SEAL EPDXY MAY FLOW OUT A MAXIMUM OF .018 [0.46] FROM EDGE OF LID LID MAY BE MIS-ALIGNED UP TO .008 [0.20] FROM PACKAGE IN ANY DIRECTION 4.

Reference Application Note AN0004363 for mounting recommendations. Meets JEDEC moisture sensitivity level 3 requirements. Plating is Au.

¹⁰

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.