Integrated Switch and LNA Module 1 - 6 GHz

MAMF-011149

Rev. V2

Features

- High Power SPDT Switch and 2-Stage LNA
- Broadband: 1 6 GHz
- No External Matching Components Required
- RX Mode Gain:

35.5 dB @ 2.5 GHz

34.0 dB @ 3.75 GHz

33.8 dB @ 4.7 GHz

RX Mode Noise Figure:

1.1 dB @ 2.5 GHz

1.2 dB @ 3.75 GHz

1.4 dB @ 4.7 GHz

TX Mode at 2 - 5 GHz:

Insertion Loss: 0.35 dB

P0.1dB: 41 dBm

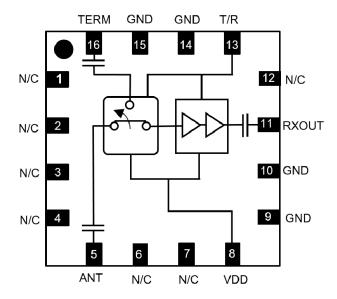
- Single 5 V Supply
- Low DC Current: 80 mA in RX Mode
- Integrated Control Circuitry with 1.8 V Logic
- Lead-Free 3 mm 16 Lead QFN Package
- RoHS* Compliant

Applications

- 5G Massive MIMO
- · Wireless Infrastructure
- TDD-based communication systems

Description

The MAMF-011149 is a compact surface mount, highly integrated high power SPDT switch and 2-stage low noise amplifier (LNA) module. It includes an antenna switch and a LNA in a compact 3 mm QFN package. All the bias circuitry and matching components are internal to the module.


This module operates from 1 - 6 GHz and features high power handling, low noise figure, high linearity and low power consumption. The module requires a single 5 V supply and the T/R switch is 1.8 V CMOS compatible.

Ordering Information^{1,2}

Part Number	Package
MAMF-011149-TR1000	1K reel
MAMF-011149-001SMB	Sample Board

- 1. Reference Application Note M513 for reel size information.
- 2. All sample boards include 5 loose parts.

Functional Block

Pin Configuration³

Pin#	Pin Name	Description
1,2,3,4,6,7,12	N/C	Internally No Connect
5	ANT	Antenna Port
8	V_{DD}	Supply Voltage
9,10,14,15	GND	Ground
11	RXOUT	RX Output Port
13	T/R	Logic Signaling Pin
16	TERM	Termination Port
17	Paddle ⁴	Ground

- 3. MACOM recommends connecting N/C pins to ground.
- The exposed pad centered on the package bottom must be connected to PCB ground with low electrical and thermal resistances.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Integrated Switch and LNA Module 1 - 6 GHz

MAMF-011149

Rev. V2

AC Electrical Specifications (RX Mode): P_{IN} = -30 dBm, T_C = +25°C, V_{DD} = 5 V, Z_0 = 50 Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	ANT to RXOUT, 2.5 GHz ANT to RXOUT, 3.75 GHz ANT to RXOUT, 4.7 GHz	dB	32 32 —	35.5 34.0 33.8	1
Input IP3	P _{IN} /tone = -30 dBm, Tone Delta = 2 MHz, ANT to RXOUT, 2.5 GHz ANT to RXOUT, 3.75 GHz ANT to RXOUT, 4.7 GHz	dBm		-4.3 -4.0 -5.0	
Input P1dB	ANT to RXOUT, 2.5 GHz ANT to RXOUT, 3.75 GHz ANT to RXOUT, 4.7 GHz	dBm	_	-17.5 -16.9 -16.5	_
Noise Figure	ANT to RXOUT, 2.5 GHz ANT to RXOUT, 3.75 GHz ANT to RXOUT, 4.7 GHz	dB	_	1.1 1.2 1.4	
ANT Port Return Loss	ANT Port, 2.5 GHz ANT Port, 3.75 GHz ANT Port, 4.7 GHz	dB		21 22 17	1
RXOUT Port Return Loss	RXOUT Port, 2.5 GHz RXOUT Port, 3.75 GHz RXOUT Port, 4.7 GHz	dB	_	21 22 18	-
Reverse Isolation	RXOUT to ANT, 2.5 GHz RXOUT to ANT, 3.75 GHz RXOUT to ANT, 4.7 GHz	dB	_	50 50 48	

AC Electrical Specifications (TX Mode): P_{IN} = -30 dBm, T_C = +25°C, V_{DD} = 5 V, Z_0 = 50 Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Insertion Loss	ANT to TERM, 2.5 GHz ANT to TERM, 3.75 GHz ANT to TERM, 4.7 GHz	dB	_	0.30 0.35 0.40	1
P0.1dB Compression Point	2 μs pulse width, 10% duty cycle, ANT to TERM, 2.5 GHz, ANT to TERM, 3.75 GHz	dBm	_	41 41	-
ANT Port Return Loss	ANT Port, 2.5 GHz ANT Port, 3.75 GHz ANT Port, 4.7 GHz	dB	_	27 25 23	_
TERM Port Return Loss	TERM Port, 2.5 GHz TERM Port, 3.75 GHz TERM Port, 4.7 GHz	dB	_	28 25 23	
ANT - RXOUT Isolation	ANT to RXOUT, 2.5 GHz ANT to RXOUT, 3.75 GHz ANT to RXOUT, 4.7 GHz	dB	_	56 53 49	_
ANT Port Input Power	ANT Port, 2.5 GHz, CW, T_C = 105°C ANT Port, 2.5 GHz, LTE (10dB PAR), T_C = 105°C	dBm	_	39 36	_

Rev. V2

Transient Electrical Specifications: Freq. = 2.5 GHz, P_{IN} = -30 dBm, T_C = 25°C, V_{DD} = 5 V, Z_0 = 50 Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
T/R Gain Settling Time	ANT to RXOUT gain settling time within 0.3 dB of final value after T/R command	μs	_	0.3	_
T/R Insertion Loss Settling Time	ANT to TERM path insertion loss settling time within 0.3 dB of final value after T/R command	μs	_	0.3	_
Power on Gain Settling Time	ANT to RXOUT gain settling time within 0.5 dB of final value after DC power on	ms	_	1	
Power on Insertion Loss Settling Time	ANT to TERM settling time within 0.5 dB of final value after DC power on	ms	_	1	_

DC Electrical Specifications: T_C = 25°C, V_{DD} = 5 V, Z_0 = 50 Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Supply Voltage	_	V	4.75	5	5.25
Amplifier Bias Current	RX Mode TX Mode	mA	_	80 2.3	_
T/R Control Voltage	RX Mode, Logic High TX Mode, Logic Low	V	_	1.8 0	_
T/R Logic Input Current	RX Mode, Logic High TX Mode, Logic Low	μA	_	40 0.04	_

Control Truth Table

T/R Control			
RX Mode	Logic High		
TX Mode	Logic Low or Open		

Integrated Switch and LNA Module 1 - 6 GHz

MAMF-011149

Rev. V2

Absolute Maximum Ratings^{5,6}

Parameter	Absolute Maximum
Antenna Input Power ⁷ Freq. = 2.5 GHz: RX Mode TX Mode	23 dBm LTE (10 dB PAR), 26 dBm CW 39 dBm LTE (10 dB PAR), 41 dBm CW
DC Voltages: V _{DD} , ANT & TERM T/R & RXOUT	-0.5 to +5.5 V -0.5 to +2.75 V
Junction Temperature: RX Mode ^{8,10} TX Mode ^{8,10} TX Mode ⁷	+150°C +125°C +140°C
Operating Temperature ⁹	-40°C to +105°C
Storage Temperature	-55°C to +150°C

- 5. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- 7. Single event, up to 10 seconds duration.
- 8. Operating at nominal conditions with $T_J \le +150$ °C (RX Mode) and $T_J \le +125$ °C (TX Mode) will ensure MTTF >> 1 x 10⁶ hours.
- 9. Operating/Case temperature (T_C) is the temperature of the exposed paddle.
- 10. Junction Temperature (T_J) = T_C + Θ_{JC} * P_{DISS} where P_{DISS} is the total DC & RF dissipated power.
 - RX Mode: Typical thermal resistance (Θ_{JC}) = 33.4°C/W.
 - TX Mode: Typical thermal resistance (Θ_{JC}) = 15.3°C/W.

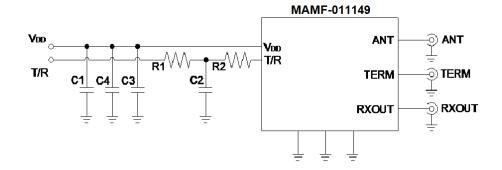
Handling Procedures

Please observe the following precautions to avoid damage:

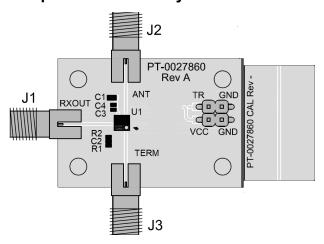
Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Parameter	Rating	Standard
Human Body	1000 V	ESDA/JEDEC
Model (HBM)	(Class 1C)	JS-001
Charged Device	1000 V	ESDA/JEDEC
Model (CDM)	(Class C3)	JS-002


Power Supplies

De-coupling capacitors should be placed at the V_{DD} supply pin to minimize noise and fast transients. Supply voltage change or transients should have a slew rate smaller than 1 V / 10 μ s. In addition, all control pins should remain at 0 V (+/- 0.3 V) and no RF power should be applied while the supply voltage ramps or while it returns to zero.



Rev. V2

Sample Board Schematic

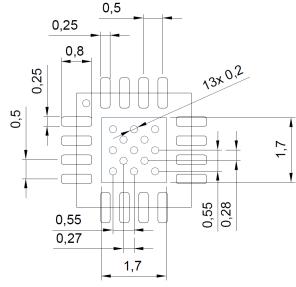
Sample Board PCB Layout

Material: Rogers 4003C

• Dielectric thickness: 0.203 mm

Track/Gap: 0.394/0.25 mm

Finished copper thickness: 44 μm +/- 10 μm


Finish both sides: 0.075 μm gold over 4.5 μm nickel

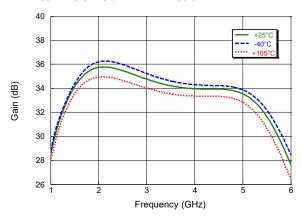
• Further layout information available on request

Parts List

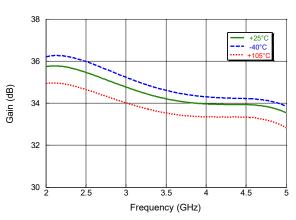
Part	Value	Case style
C1	10 μF	0603
C2	5 pF	0402
C3	470 pF	0402
C4	10 nF	0402
R1	1 kΩ	0402
R2	100 Ω	0402

Recommended Thermal Land Pattern

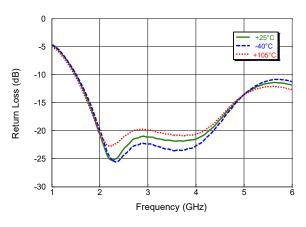
- 13 Ground Vias
- 0.2 mm Diameter, 1/2 oz. Copper

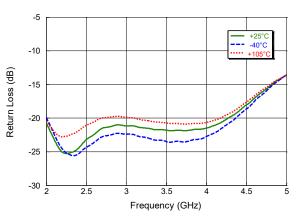


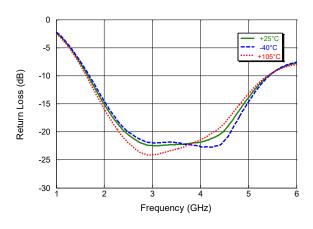
Rev. V2

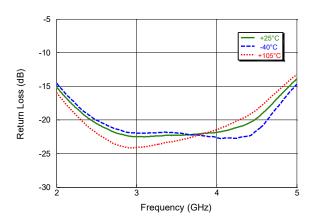

Typical Performance Curves:

 P_{IN} = -30 dBm, V_{DD} = 5 V, T_C = +25°C, Z_0 = 50 Ω (unless otherwise indicated)


ANT to RXOUT Gain¹¹ - RX Mode


ANT to RXOUT Gain¹¹ - RX Mode

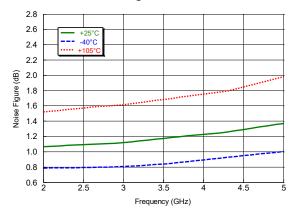

ANT Port Return Loss - RX Mode


ANT Port Return Loss - RX Mode

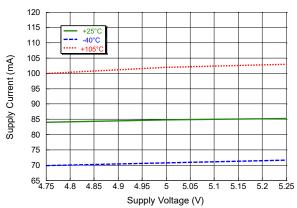
RXOUT Port Return Loss - RX Mode

RXOUT Port Return Loss - RX Mode

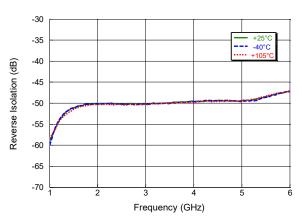
11. For gain, noise figure, insertion loss and isolation plots, RF trace and connector losses are de-embedded.

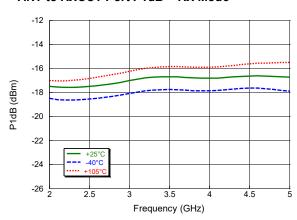


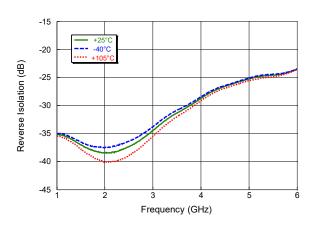
Rev. V2

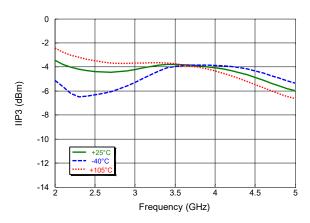

Typical Performance Curves:

 P_{IN} = -30 dBm, V_{DD} = 5 V, T_C = +25°C, Z_0 = 50 Ω (unless otherwise indicated)


ANT to RXOUT Noise Figure 11 - RX Mode

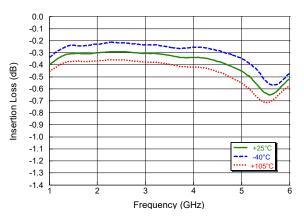

Supply Current - RX Mode


ANT to RXOUT Port Reverse Isolation¹¹ - RX Mode

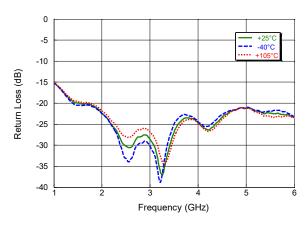

ANT to RXOUT Port P1dB - RX Mode

ANT to TERM Port Switch Isolation 11 - RX Mode

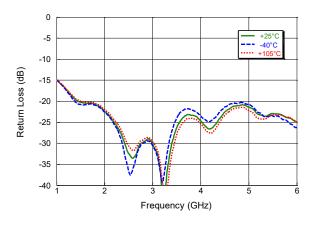
ANT to RXOUT Port Input IP3 - RX Mode

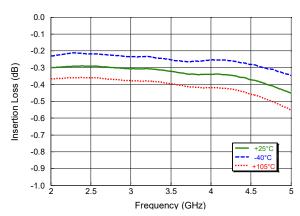

11. For gain, noise figure, insertion loss and isolation plots, RF trace and connector losses are de-embedded.

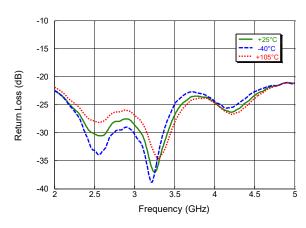
Rev. V2

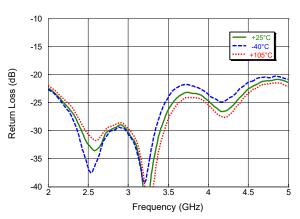

Typical Performance Curves

 $P_{IN} = -30$ dBm, $V_{DD} = 5$ V, $T_C = +25$ °C, $Z_0 = 50$ Ω (unless otherwise indicated)


ANT to TERM Switch Insertion Loss¹¹ - TX Mode


ANT Port Return Loss - TX Mode

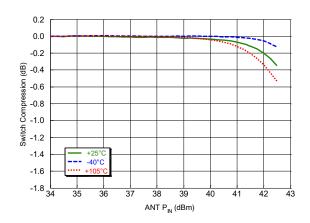

TERM Port Return Loss - TX Mode


ANT to TERM Switch Insertion Loss¹¹ - TX Mode

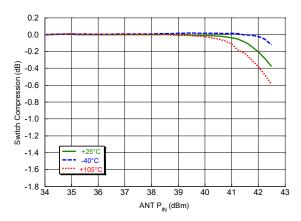
ANT Port Return Loss - TX Mode

TERM Port Return Loss - TX Mode

11. For gain, noise figure, insertion loss and isolation plots, RF trace and connector losses are de-embedded.



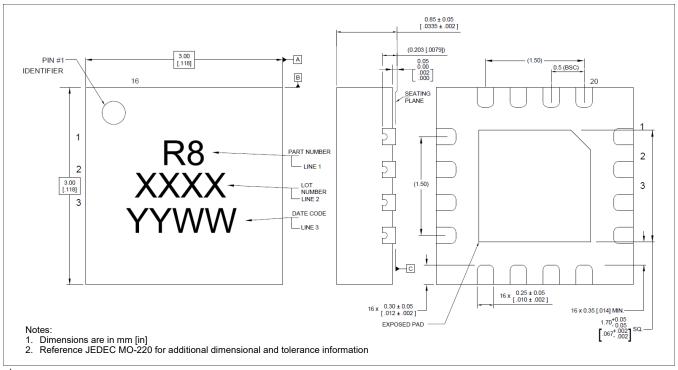
Rev. V2


Typical Performance Curves

 $P_{IN} = -30$ dBm, $V_{DD} = 5$ V, $T_C = +25$ °C, $Z_0 = 50$ Ω (unless otherwise indicated)

ANT to TERM Port Switch Compression Characteristic 12 at 2.5 GHz - TX mode

ANT to TERM Port Switch Compression Characteristic 12 at 3.75 GHz - TX mode



12. Measured with 2 µs pulse width, 10% duty cycle. RF trace and connector losses are de-embedded.

Rev. V2

Lead-Free 3 mm 16-Lead QFN[†]

Reference Application Note S2083 for lead-free solder reflow recommendations.

Meets JEDEC moisture sensitivity level 1 requirements in accordance to JEDEC J-STD-020D.

Plating is NiPdAu over Copper