

Double-Balanced Mixer 18 - 46 GHz

Rev. V2

Features

Low Conversion Loss: 6.5 dBHigh Linearity: 20 dBm IIP3

Wide IF Bandwidth: DC to 20 GHz

High Isolation

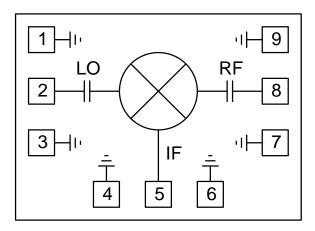
• Die Size: $1.15 \times 0.97 \times 0.10 \text{ mm}$

RoHS* Compliant

Description

MAMX-011037-DIE is a double-balanced passive diode mixer MMIC. The mixer offers low conversion loss, high linearity and a wide IF bandwidth. The double-balanced circuit configuration provides excellent port isolation while internal 50-ohm matching simplifies its application.

This mixer is well suited for applications such as test and measurement, microwave radio and radar.


MAMX-011037-DIE is also available in a 3 mm QFN package. Refer to datasheet MAMX-011054.

Ordering Information

Part Number	Package	
MAMX-011037-DIE	Vacuum Release Gel Pack ¹	
MAMX-011037-SB2	Sample Board	

1. Die quantity varies.

Functional Schematic

Bond-pad Configuration

Pad No.	Function	Pad No.	Function
1	GND ²	6	GND ²
2	LO	7	GND ²
3	GND ²	8	RF
4	GND ²	9	GND ²
5	IF	10	GND ³

^{2.} These pads are internally connected to ground, and they can be left unconnected.

The backside of the die must be connected to RF, DC and thermal ground.

^{*} Restrictions on Hazardous Substances, European Union Directive 2011/65/EU.

Double-Balanced Mixer 18 - 46 GHz

Rev. V2

Electrical Specifications⁴: $F_{IF} = 1GHz$, $P_{LO} = +15$ dBm, $T_A = 25$ °C, $Z_0 = 50$ Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
LO and RF Frequency	_	GHz	18	_	46
IF Frequency	_	GHz	0	_	20
LO Power	_	dBm	_	15	_
Conversion Loss	18 - 24 GHz 24 - 40 GHz 40 - 46 GHz	dB –		6.5 6.5 6.5	12 10 11
Input P1dB	_	– dBm		12	_
Input IP3	P_{RF} = -10 dBm/tone, Δf = 1 MHz	dBm	_	20	_
Input IP2	P_{RF} = -10 dBm/tone, Δf = 1 MHz	dBm	_	50	_
LO-to-RF Isolation	_	dB	_	35	_
LO-to-IF Isolation	18 - 24 GHz 24 - 40 GHz 40 - 46 GHz	dB	25 27 23	37 45 44	_
RF-to-IF Isolation	18 - 24 GHz 24 - 40 GHz 40 - 46 GHz	dB		10 24 27	_
RF Return Loss	RF = 40 GHz	dB	_	5	_
IF Return Loss	IF = 1 GHz	dB	_	15	_

^{4.} All specifications refer to down-conversion operation, unless otherwise noted.

Absolute Maximum Ratings^{5,6}

Parameter	Absolute Maximum	
LO Power	23 dBm	
RF or IF Power	20 dBm	
Junction Temperature ⁷	+150°C	
Operating Temperature	-55°C to +85°C	
Storage Temperature	-65°C to +150°C	

Exceeding any one or combination of these limits may cause permanent damage to this device.

Handling Procedures

Please observe the following precautions to avoid damage:

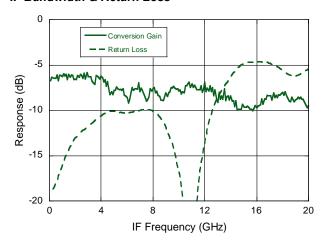
Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1B devices.

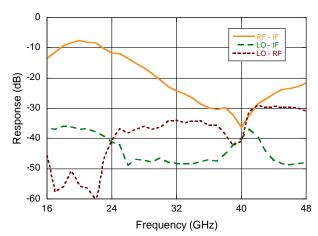
2

MACOM does not recommend sustained operation near these survivability limits.

^{7.} Operating at nominal conditions with $T_J \le +150^{\circ}\text{C}$ will ensure MTTF > 1 x 10^6 hours.



Double-Balanced Mixer 18 - 46 GHz

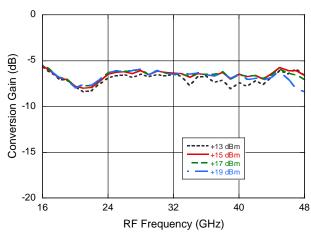

Rev. V2

Typical Performance Curves, P_{LO} = +15 dBm, T_A = 25°C

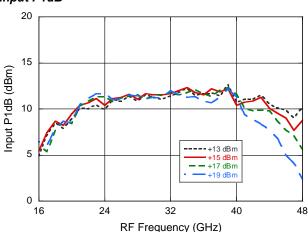
IF Bandwidth & Return Loss

Isolation

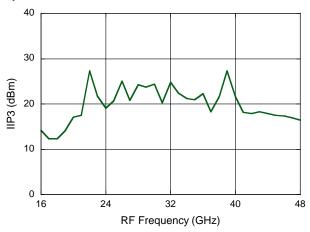
RF Return Loss

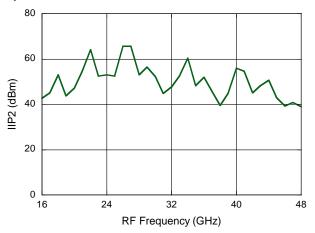


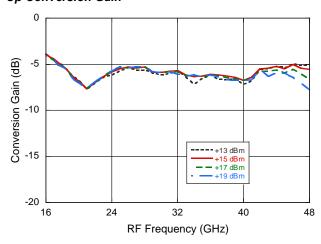
Double-Balanced Mixer 18 - 46 GHz


Rev. V2

Typical Performance Curves vs. LO Power, T_A = 25°C


Conversion Gain


Input P1dB


Input IP3 at P_{LO} = +15 dBm

Input IP2 at P_{LO} = +15 dBm

Up Conversion Gain

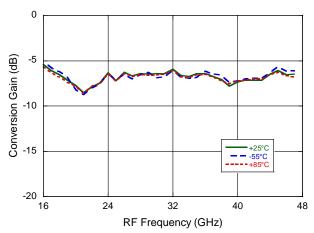
All performance curves refer to down-conversion operation, unless otherwise noted.

Two-tone input power = -10 dBm each tone, 1 MHz spacing.

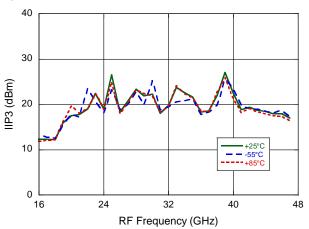
4

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

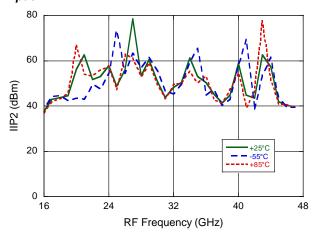
Visit www.macom.com for additional data sheets and product information.



Double-Balanced Mixer 18 - 46 GHz


Rev. V2

Typical Performance Curves vs. Temperature, P_{LO} = +15 dBm


Conversion Gain

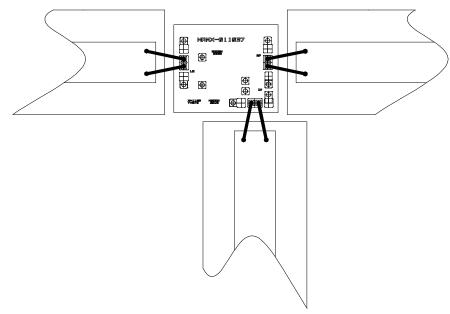
Input IP3

Input IP2

All performance curves refer to down-conversion operation, unless otherwise noted.

Two-tone input power = -10 dBm each tone, 1 MHz spacing.

Double-Balanced Mixer


18 - 46 GHz Rev. V2

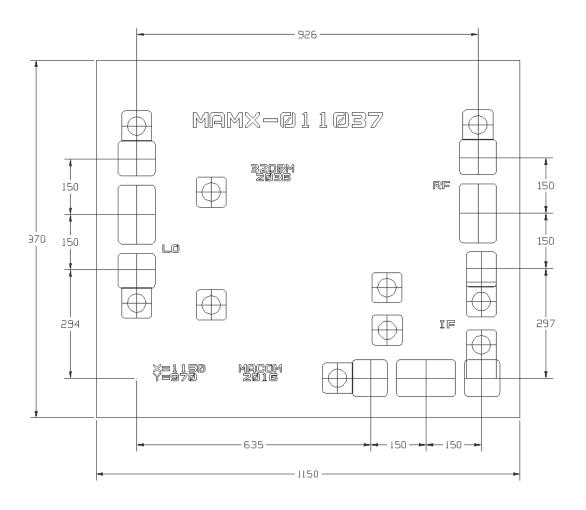
MxN Spurious Rejection @ IF Port (dBc IF)

RF = 24 GHz @ -10 dBm LO = 25 GHz @ +15 dBm

	NxLO				
MxRF	0	1	2	3	4
0	x	14	24	x	х
1	4	0	22	x	х
2	75	61	67	66	х
3	x	86	66	71	75
4	х	Х	88	99	95

Assembly Guideline

Notes:


Attach bare die to PCB or carrier using conductive epoxy. Bond die signal pads to PCB 50 Ω traces using 1.0 mil gold wire. Two bond wires are recommended on each signal pad for optimal performance. There is no need to bond the die GND pads.

Double-Balanced Mixer 18 - 46 GHz

Rev. V2

Outline Drawing

Notes:

Units are in microns with a tolerance of $\pm 5~\mu m$, except for die exterior dimensions which are street-center-to-street-center – nominal kerf, $\pm 20~\mu m$ tolerance.

Die thickness is 100 ±10 μm .

RF, LO and IF Bond-pads are 160 x 100 $\mu m.$