Double-Balanced Mixer 18 - 46 GHz

MAMX-011074

Rev. V2

Features

Low Conversion Loss: 7 - 9 dBHigh Linearity: 20 dBm IIP3

· Wide IF Bandwidth: DC to 20 GHz

High Isolation

• Lead-Free 3 mm, 12-lead PQFN package

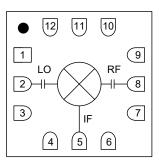
RoHS* Compliant

Applications

- Test & Measurement
- Microwave Radio
- Radar

Description

MAMX-011074 is a GaAs double-balanced passive diode mixer housed in a lead-free 3 mm, 12-lead QFN package. The mixer offers low conversion loss, high linearity and a wide IF bandwidth. The double-balanced circuit configuration provides excellent port isolation while internal 50 Ω matching simplifies its application.


This mixer is well suited for applications such as test and measurement, microwave radio and radar.

Ordering Information^{1,2}

Part Number	Package
MAMX-011074	Bulk
MAMX-011074-TR0500	500 Piece Reel ¹
MAMX-011074-SB1	Sample Board ²

- 1. Reference Application Note M513 for reel size information.
- 2. All sample boards include 5 loose parts.

Functional Schematic

Pin Configuration

Pin#	Function
1,3,4,6,7,9	GND
2	LO
5	IF
8	RF
10 - 12	NC ³
13	GND⁴

- 3. MACOM recommends connecting unused package pins to ground.
- The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Rev. V2

Electrical Specifications⁵: $F_{IF} = 1$ GHz, $P_{LO} = 16$ dBm, $T_A = +25$ °C, $Z_0 = 50$ Ω

Parameter	Test Conditions	Units	Min.	Тур.	Max.
LO and RF Frequency	_	GHz	18	_	46
IF Frequency	_	GHz	0	_	20
LO Power	_	dBm	_	16	_
Conversion Loss	18 - 24 GHz 24 - 40 GHz 40 - 46 GHz	dB	_	9 7 7	12.5 12 10.5
Input P1dB	18 - 24 GHz 24 - 40 GHz 40 - 46 GHz	0 GHz dBm		10 12 10	_
Input IP3	P _{RF} = -10 dBm/tone, Δf = 1 MHz	dBm	_	20	_
Input IP2	P_{RF} = -10 dBm/tone, Δf = 1 MHz	dBm	_	50	_
LO-to-RF Isolation	18 - 46 GHz	dB	_	35	_
LO-to-IF Isolation	18 - 24 GHz 24 - 40 GHz 40 - 46 GHz	dB	_	40 40 40	_
RF-to-IF Isolation	18 - 24 GHz 24 - 40 GHz 40 - 46 GHz	dB	_	9 30 35	_
RF Return Loss	RF = 40 GHz	dB	_	10	_
IF Return Loss	IF = 1 GHz	dB	_	12	_

^{5.} All specifications refer to down-conversion operation, unless otherwise noted.

Absolute Maximum Ratings^{6,7}

Parameter	Absolute Maximum		
LO Power	23 dBm		
RF or IF Power	20 dBm		
Junction Temperature ⁸	+150°C		
Operating Temperature	-55°C to +85°C		
Storage Temperature	-65°C to +150°C		

- 6. Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation near these survivability limits.
- 8. Operating at nominal conditions with $T_J \le +150^{\circ}C$ will ensure MTTF > 1 x 10^6 hours. Thermal resistance, Θ_{JC} is $85^{\circ}C/W$.

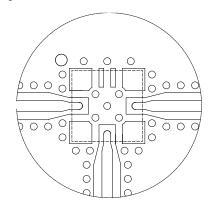
Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

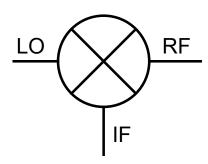
These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices with the following JEDEC rating:

HBM Class 1B CDM Class 3C

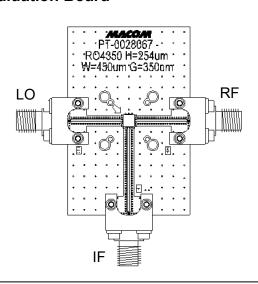

Rev. V2

MxN Spurious Rejection at IF Port (dBc IF)

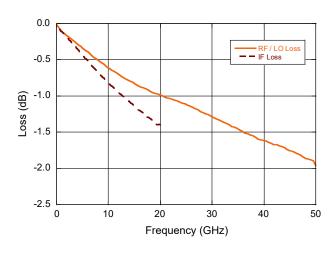
RF = 24 GHz @ -10 dBm LO = 23 GHz @ +16 dBm


	nxLO					
mxRF	0	1	2	3	4	
0	х	4	44	x	x	
1	7	0	64	47	x	
2	68	61	60	70	71	
3	х	х	83	x	34	
4	х	х	x	x	99	

PCB Layout


DXF available on request based on 10 mil RO4350 substrate.

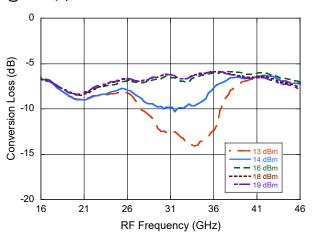
Application Schematic

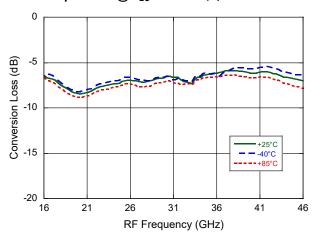


No external parts required for operation of MAMX-011074.

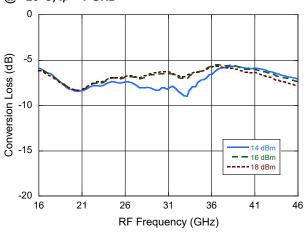
Evaluation Board

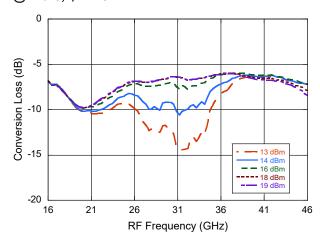
Evaluation Board Losses

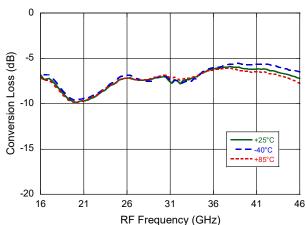


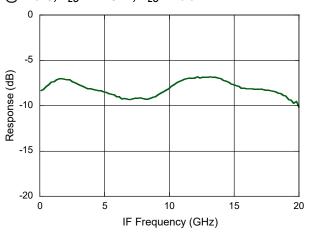

Rev. V2

Typical Performance Curves


Conversion Loss USB (Down Conversion) @ $+25^{\circ}$ C, $I_F = 1$ GHz


Conversion Loss USB Over Temperature @ P_{LO} = 16 dBm, I_F = 1 GHz

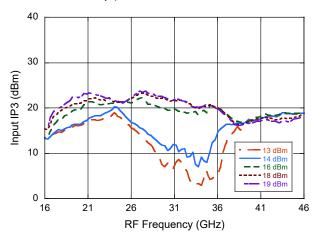

Conversion Loss USB (Up Conversion) @ +25°C, I_F = 1 GHz

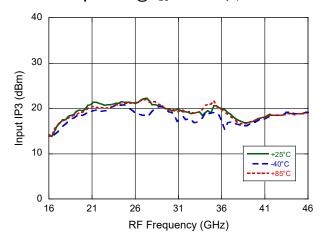

Conversion Loss LSB (Down Conversion) @ +25°C, $I_F = 1$ GHz

Conversion Loss LSB Over Temperature @ P_{LO} = 16 dBm, I_F = 1 GHz

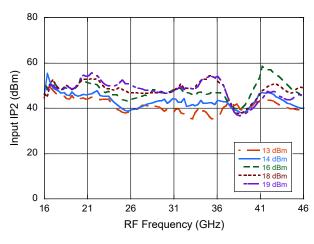
IF Bandwidth @ $+25^{\circ}$ C, $F_{LO} = 24$ GHz, $P_{LO} = 16$ dBm

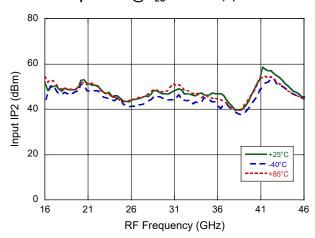
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

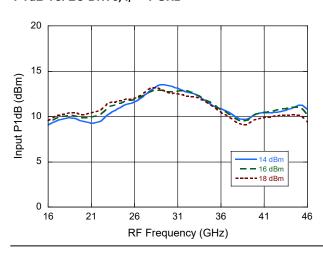

Visit www.macom.com for additional data sheets and product information.

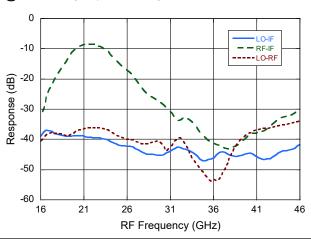

Rev. V2

Typical Performance Curves


IIP3 vs. LO Drive, $I_F = 1$ GHz

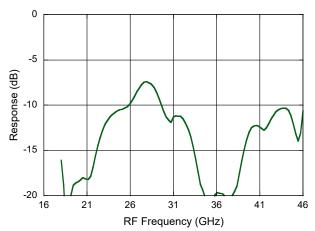

IIP3 vs. Temperature @ P_{LO} = 16 dBm, I_F = 1 GHz

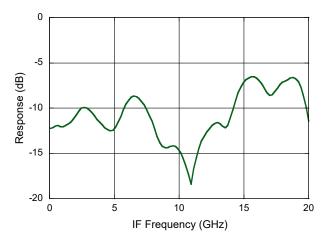

IIP2 vs. LO Drive I_F = 1 GHz


IIP2 vs. Temperature @ P_{LO} = 16 dBm, I_F = 1 GHz

P1dB vs. LO Drive, $I_F = 1$ GHz

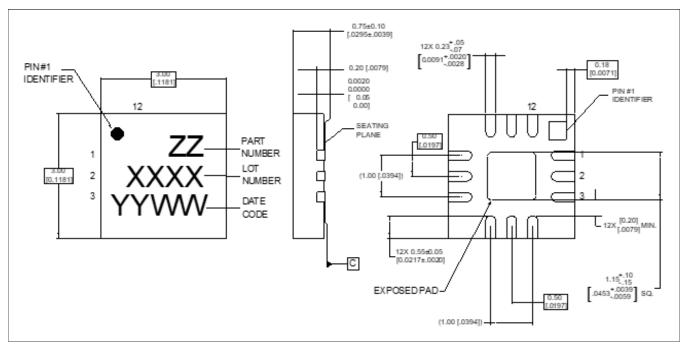
Isolation (Down Conversion) @ $I_F = 1$ GHz, $P_{LO} = 16$ dBm; $P_{RF} = -10$ dBm




Rev. V2

Typical Performance Curves

RF Return Loss @ +25°C, F_{LO} = 28 GHz, P_{LO} = 16 dBm


IF Return Loss @ $+25^{\circ}$ C, F_{LO} = 28 GHz, P_{LO} = 16 dBm

Rev. V2

Lead-Free 3 mm 12-Lead QFN[†]

[†] Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Plating is 100% matte tin over copper.