

MAPC-A1000

Rev. V2

Features

- MACOM PURE CARBIDE™ Amplifier Series
- Suitable for Linear & Saturated Applications
- CW & Pulsed Operation: 25 W Output Power
- 50 Ω Input Matched
- 260°C Reflow Compatible
- 28 V & 50 V
- 100% RF Tested
- RoHS* Compliant

Description

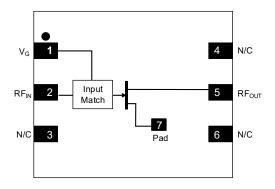
The MAPC-A1000 is a GaN on Silicon Carbide HEMT D-mode amplifier suitable for 30 - 3000 MHz frequency operation. The device supports both CW and pulsed operation with minimum output power levels of 25 W (44 dBm) in a 6.5 x 7.0 mm plastic package.

The MAPC-A1000 has a wide range of applications, including military radio communications, RADAR, avionics, digital cellular infrastructure, RF energy, and test instrumentation.

Typical Performance:

- Measured under load-pull at 2.5 dB Compression, 100 μs pulse width, 10% duty cycle.
- $V_{DS} = 50 \text{ V}, I_{DQ} = 40 \text{ mA}, T_{C} = 25^{\circ}\text{C}$

Frequency (GHz)	Output Power ¹ (dBm)	Gain² (dB)	η _D ² (%)
0.9	45.8	13.1	77.2
1.4	45.8	12.6	76.4
2.0	45.9	12.5	74.3
2.7	45.9	11.6	72.0
3.0	45.9	10.8	69.6


V_{DS} = 28 V, I_{DQ} = 40 mA, T_C = 25°C

Frequency (GHz)	Output Power ¹ (dBm)	Gain² (dB)	η _D ² (%)
0.9	43.1	11.0	74.0
1.4	43.0	10.8	73.0
2.0	43.2	10.7	71.5
2.7	43.3	9.6	70.7
3.0	43.2	8.8	68.2

- 1. Load impedance tuned for maximum output power.
- Load impedance tuned for maximum drain efficiency.

Functional Schematic

Pin Configuration

Pin#	Pin Name	Function
1	V_{G}	Gate
2	RF _{IN}	RF Input
3, 4, 6	N/C	No Connection
5	RF _{OUT} / V _D	RF Output / Drain
7	Pad ³	Ground / Source

The pad on the package bottom must be connected to RF, DC and thermal ground.

Ordering Information

Part Number	Package
MAPC-A1000-AD000	Bulk Quantity
MAPC-A1000-ADTR1	Tape and Reel
MAPC-A1000-ADSB1	Sample Board

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MAPC-A1000

Rev. V2

RF Electrical Characteristics: $T_C = 25^{\circ}C$, $V_{DS} = 50 \text{ V}$, $I_{DQ} = 40 \text{ mA}$ Note: Performance in MACOM Evaluation Test Fixture, 50 Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Small Signal Gain	Pulsed ⁴ , 2.7 GHz	Gss	-	12.8	-	dB
Power Gain	Pulsed ⁴ , 2.7 GHz, 2.5 dB Gain Compression	G _{SAT}	-	10.3	-	dB
Saturated Drain Efficiency	Pulsed ⁴ , 2.7 GHz, 2.5 dB Gain Compression	η_{SAT}	-	60	-	%
Saturated Output Power	Pulsed ⁴ , 2.7 GHz, 2.5 dB Gain Compression	P _{SAT}	-	44.8	-	dBm
Gain Variation (-40°C to +85°C)	Pulsed ⁴ , 2.7 GHz	ΔG	-	0.017	-	dB/°C
Power Variation (-40°C to +85°C)	Pulsed ⁴ , 2.7 GHz	ΔP2.5dB	-	0.003	-	dBm/°C
Power Gain	Pulsed ⁴ , 2.7 GHz, P _{IN} = 32.7 dBm	G₽	-	11.3	-	dB
Drain Efficiency	Pulsed ⁴ , 2.7 GHz, P _{IN} = 32.7 dBm	η	-	56.4	-	%
Input Return Loss	Pulsed ⁴ , 2.7 GHz, P _{IN} = 32.7 dBm	IRL	-	-8.7	-	dB
Ruggedness: Output Mismatch	All phase angles	Ψ	VSWR = 10:1, No Damage		Damage	

RF Electrical Specifications: T_A = 25°C, V_{DS} = 50 V, I_{DQ} = 40 mA Note: Performance in MACOM Production Test Fixture, 50 Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Power Gain	Pulsed ⁴ , 2.7 GHz, 2.5 dB Gain Compression	G _{SAT}	9.0	10.0	-	dB
Saturated Drain Efficiency	Pulsed ⁴ , 2.7 GHz, 2.5 dB Gain Compression	η_{SAT}	48	52.7	-	%
Saturated Output Power	Pulsed ⁴ , 2.7 GHz, 2.5 dB Gain Compression	P _{SAT}	43	44.4	-	dBm
Power Gain	Pulsed ⁴ , 2.7 GHz, P _{IN} = 33.6 dBm	G _P	10	10.5	-	dB
Drain Efficiency	Pulsed ⁴ , 2.7 GHz, P _{IN} = 33.6 dBm	η	48	52.6	-	%
Input Return Loss	Pulsed⁴, 2.7 GHz, P _{IN} = 33.6 dBm	IRL	-7.5	-9	-	dB

^{4.} Pulse details: 100 μs pulse width, 10% Duty Cycle.

DC Electrical Characteristics: T_A = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Drain-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 130 V	I _{DLK}	ı	ı	3.3	mA
Gate-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 0 V	I_{GLK}	-	-	3.3	mA
Gate Threshold Voltage	$V_{DS} = 50 \text{ V}, I_{D} = 3.3 \text{ mA}$	V _T	-3.3	-2.9	-	V
Gate Quiescent Voltage	$V_{DS} = 50 \text{ V}, I_{D} = 40 \text{ mA}$	V_{GSQ}	-	-2.75	-	٧
On Resistance	$V_{GS} = 2 \text{ V}, I_D = 24.8 \text{ mA}$	R _{on}	-	1.45	-	Ω
Maximum Drain Current	V _{DS} = 7 V, pulse width 300 μs	I _{D, MAX}	1	3.94	-	Α

MAPC-A1000

Rev. V2

Absolute Maximum Ratings^{5,6,7,8,9}

Parameter	Absolute Maximum		
Drain Source Voltage, V _{DS}	130 V		
Gate Source Voltage, V _{GS}	-10 to 3 V		
Gate Current, I _G	6.62 mA		
Storage Temperature Range	-65°C to +150°C		
Case Operating Temperature Range	-40°C to +85°C		
Channel Operating Temperature Range, T _{CH}	-40°C to +225°C		
Absolute Maximum Channel Temperature	+250°C		

- Exceeding any one or combination of these limits may cause permanent damage to this device.
- MACOM does not recommend sustained operation above maximum operating conditions.

- Operating at drain source voltage $V_{DS} < 55$ V will ensure MTTF > 2 x 10⁶ hours. Operating at nominal conditions with $T_{CH} \le 225^{\circ}$ C will ensure MTTF > 2 x 10⁶ hours. MTTF may be estimated by the expression MTTF (hours) = A e [B + C/(T+273)] where *T* is the channel temperature in degrees Celsius, A = 1, B = -38.215, and C = 26,343.

Thermal Characteristics¹⁰

Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance using Finite Element Analysis	V _{DS} = 50 V T _C = 85°C,T _{CH} = 225°C	$R_{\theta}(FEA)$	6.9	°C/W
Thermal Resistance using Infrared Measurement of Die Surface Temperature	V _{DS} = 50 V T _C = 85°C,T _{CH} = 225°C	$R_{\theta}(IR)$	5.5	°C/W

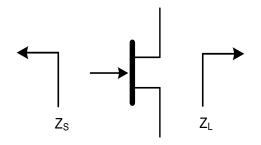
Case temperature measured using thermocouple embedded in heat-sink. Contact local applications support team for more details on this

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.


MAPC-A1000

Pulsed⁴ Load-Pull Performance at 50 V **Reference Plane at Device Leads**

		Maximum Output Power							
			V _{DS} = 50 V, I _{DQ} = 40 mA, T _C = 25°C, P2.5dB						
Frequency (GHz)	Z _{source} (Ω)	Z _{LOAD} ¹¹ (Ω)	Gain (dB)	Р _{оит} (dBm)	Р _{оит} (W)	η _D (%)	AM/PM (°)		
0.9	23.1 + j2.7	18.2 - j14.5	11.7	45.8	38.0	65.5	112.0		
1.4	27.9 + j6.4	19.9 + j7.1	11.5	45.8	38.0	63.4	96.6		
2.0	25.8 - j1.2	14.8 + j6.2	11.5	45.9	38.9	61.5	45.0		
2.7	25.2 - j20	14.8 + j0.3	11.0	45.9	38.9	62.6	-10.0		
3.0	36.1 - j31.4	12.6 - j2.3	10.2	45.9	38.9	59.3	-29.3		

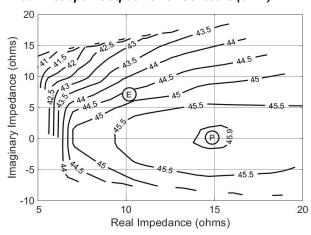
		Maximum Drain Efficiency						
			$V_{DS} = 50$	$V, I_{DQ} = 40 \text{ mA}$, T _C = 25°C, P	2.5dB		
Frequency (GHz)	Z _{SOURCE} (Ω)	Z _{LOAD} ¹² (Ω)	Gain (dB)	Р _{оит} (dBm)	Р _{оит} (W)	η _D (%)	AM/PM (°)	
0.9	21.2 + j 2.9	33.1 + j8.3	13.1	42.9	19.5	77.2	100.9	
1.4	25.8 + j6.4	22.9 + j27	12.6	43.7	23.4	76.4	84.2	
2.0	23.8 - j1.9	9.8 + j15.2	12.5	44.1	25.7	74.3	31.0	
2.7	28.7 - j21.5	10.2 + j7.1	11.6	44.7	29.5	72.2	-20.7	
3.0	39.8 - j31.6	8.4 + j3.3	10.8	44.8	30.2	69.6	-42.2	

Impedance Reference

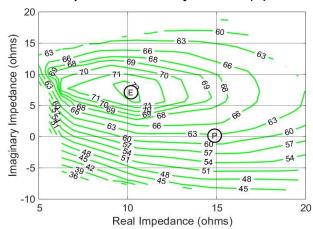
 Z_{SOURCE} = Measured impedance presented to the input of the device at package reference plane. Z_{LOAD} = Measured impedance presented to the output of the

device at package reference plane.

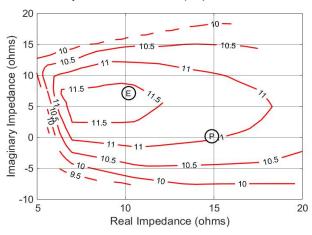
- 11. Load Impedance for optimum output power.
- 12. Load Impedance for optimum efficiency.

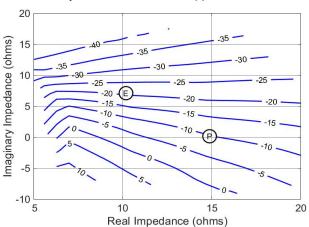


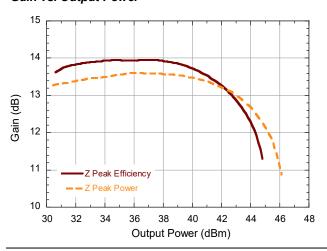
MAPC-A1000

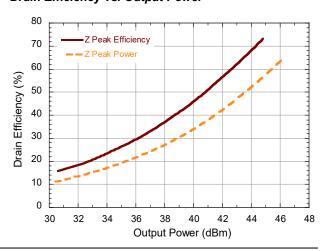

Rev. V2

Pulsed⁴ Load-Pull Performance @ 2.7 GHz


P2.5dB Loadpull Output Power Contours (dBm)


P2.5dB Loadpull Drain Efficiency Contours (%)


P2.5dB Loadpull Gain Contours (dB)


P2.5dB Loadpull AM/PM Contours (°)

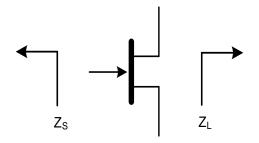
Gain vs. Output Power

Drain Efficiency vs. Output Power

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

5


MAPC-A1000

Pulsed⁴ Load-Pull Performance at 28 V **Reference Plane at Device Leads**

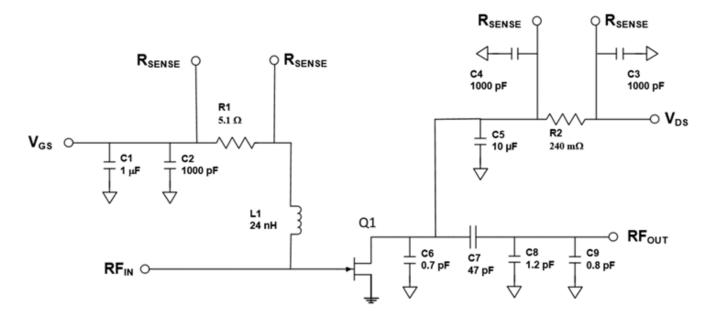
		Maximum Output Power							
			V _{DS} = 28 V, I _{DQ} = 40 mA, T _C = 25°C, P2.5dB						
Frequency (GHz)	Z _{source} (Ω)	Z _{LOAD} ¹¹ (Ω)	Gain (dB)	Р _{оит} (dBm)	Р _{оит} (W)	η₀ (%)	AM/PM (°)		
0.9	22.3 + j3.4	7.7 + j10.3	9.3	43.1	20.4	60.0	128.0		
1.4	27.9 + j8.7	13.6 + j1.9	9.4	43.0	20.0	57.7	93.0		
2.0	25.1 - j0.5	13.1 - j1.8	9.4	43.2	20.9	57.6	50.6		
2.7	28.5 - j20.8	12.5 - j5.2	8.9	43.3	21.4	61.2	-1.8		
3.0	43 - j30.3	12 - j7.5	8.3	43.2	20.9	59.7	-26.7		

		Maximum Drain Efficiency $V_{DS} = 28 \text{ V}, I_{DQ} = 40 \text{ mA}, T_{C} = 25^{\circ}\text{C}, P2.5 \text{dB}$					
Frequency (GHz)	Z _{SOURCE} (Ω)	Z _{LOAD} ¹² (Ω)	Gain (dB)	Р _{оит} (dBm)	Р _{оит} (W)	η _□ (%)	AM/PM (°)
0.9	18.9 + j3.0	13.5 + j25	11.0	38.4	6.9	74.0	111
1.4	24.7 + j5.6	14.9 + j16.8	10.8	40.8	12.0	73.0	72.1
2.0	24.5 - j4.7	12 + j10.1	10.7	41.6	14.5	71.5	32.2
2.7	32.6 - j22.9	9.9 + j4.5	9.6	41.7	14.8	70.7	-20.5
3.0	47.1 - j30.6	9.6 + j0.2	8.8	41.9	15.5	68.2	-40.5

Impedance Reference

 Z_{SOURCE} = Measured impedance presented to the input of the device at package reference plane. Z_{LOAD} = Measured impedance presented to the output of the

- 11. Load Impedance for optimum output power.
- 12. Load Impedance for optimum efficiency.


device at package reference plane.

MAPC-A1000

Rev. V2

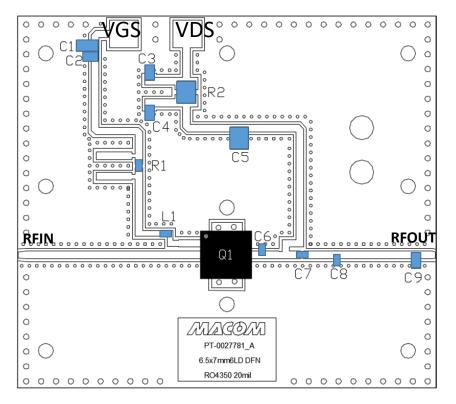
Evaluation Test Fixture and Recommended Tuning Solution 0.5 - 2.7 GHz

Description

Parts measured on evaluation board (20-mil thick RO4350). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

Bias Sequencing Turning the device ON

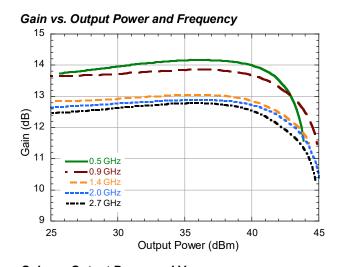
- 1. Set V_{GS} to pinch-off (V_P) .
- 2. Turn on V_{DS} to nominal voltage (50 V).
- 3. Increase V_{GS} until I_{DS} current is reached.
- 4. Apply RF power to desired level.

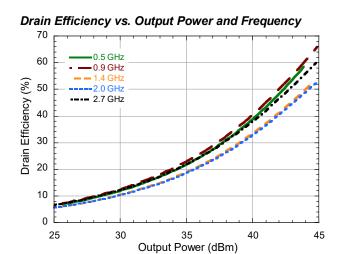

Turning the device OFF

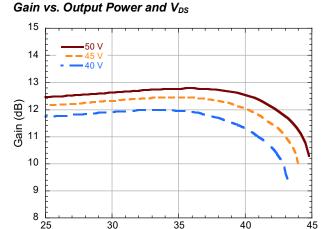
- 1. Turn the RF power OFF.
- 2. Decrease V_{GS} down to V_{P} pinch-off.
- 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS}.

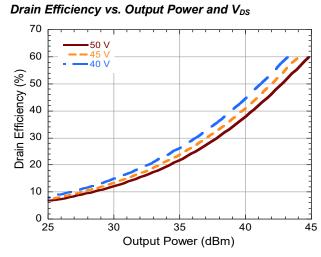
MAPC-A1000 Rev. V2

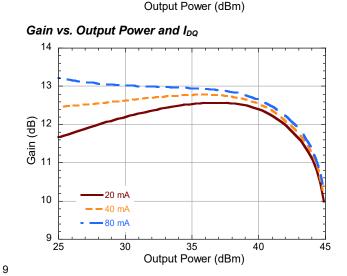
Evaluation Test Fixture and Recommended Tuning Solution 0.5 - 2.7 GHz

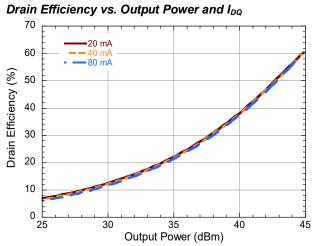



Reference Designator	Value	Tolerance	Manufacturer	Part Number	
C1	1 μF	+/- 10 %	Murata	GRM31CR72A105KA01L	
C2, C3, C4	1000 pF	+/- 5 %	Murata	GRM219R72A102JA01D	
C5	10 μF	+/- 10 %	Murata	GRM32EC72A106KE05L	
C6	0.7 pF	+/- 0.1 pF	PPI	0603N0R7BL250	
C7	47 pF	+/- 5 %	PPI	0603N470JL250	
C8	1.2 pF	+/- 0.1 pF	PPI	0603N1R2BL250	
C9	0.8 pF	+/- 0.1 pF	PPI	0805N0R8BW251X	
R1	5.1 Ω	+/- 1 %	Vishay Dale	CRCW06035R10FKEA	
R2	240 mΩ	+/- 1%	Vishay Dale	RCWE1210R240FKEA	
L1	24 nH	+/- 2 %	CoilCraft	0603HP-24NXGLW	
Q1	MACOM GaN Power Amplifier			MAPC-A1000	
PCB	RO4350, 20 mil, 0.5 oz. Cu, Au Finish				

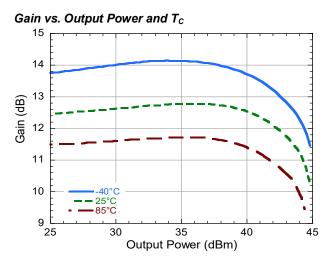


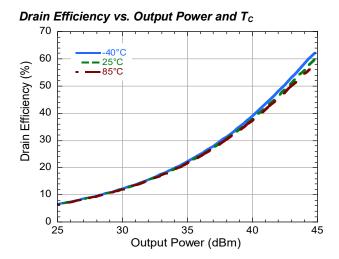

MAPC-A1000 Rev. V2

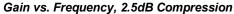

Typical Performance Curves as Measured in the 0.5 - 2.7 GHz Evaluation Test Fixture: Pulsed⁴ 2.7 GHz, V_{DS} = 50 V, I_{DQ} = 40 mA, T_{C} = 25°C (Unless Otherwise Noted)

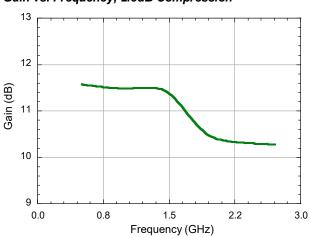


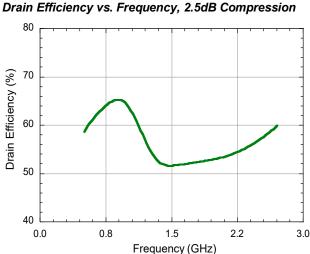
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

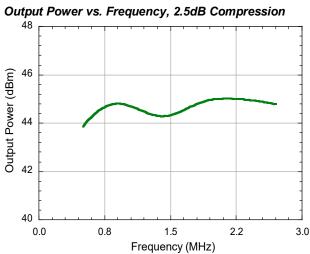

Visit www.macom.com for additional data sheets and product information.

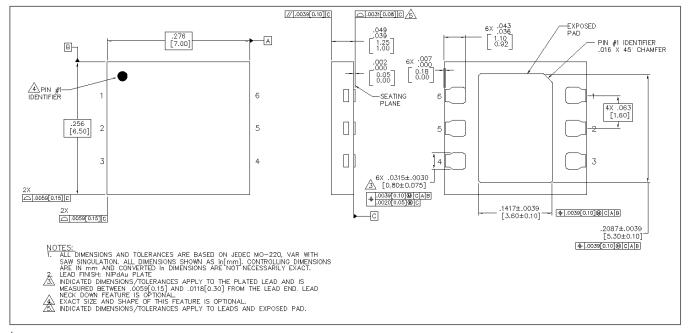



MAPC-A1000


Rev. V2


Typical Performance Curves as Measured in the 0.5 - 2.7 GHz Evaluation Test Fixture: Pulsed⁴ 2.7 GHz, V_{DS} = 50 V, I_{DQ} = 40 mA, T_{C} = 25°C (Unless Otherwise Noted)





MAPC-A1000

Rev. V2

Lead-Free 6.5 x 7.0 mm 6-Lead Package Dimensions[†]

Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level (MSL) 3 requirements. Plating is NiPdAu.