Features

- MACOM PURE CARBIDE™ Amplifier Series
- Suitable for Linear & Saturated Applications
- Pulsed Operation: 2600 W Output Power @ 65 V 2000 W Output Power @ 50 V
- Internally Pre-Matched
- 260°C Reflow Compatible
- 65 V Operation
- 100% RF Tested
- RoHS* Compliant
- Compatible with MACOM Power Management Bias Controller/Sequencer MABC-11040

Applications

• Avionics, IFF Transponders.

Description

The MAPC-A1500 is a high power GaN on Silicon Carbide HEMT D-mode amplifier suitable for 960 - 1215 MHz frequency operation. The device supports pulsed operation with output power levels of 2600 W (64.1 dBm) at 65 V and 2000 W (63.0 dBm) at 50 V and in an air cavity ceramic package.

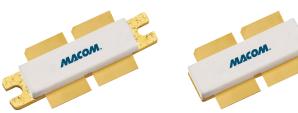
Typical Performance:

Measured under load-pull at 2.5 dB Compression, 100 μ s pulse width, 1% duty cycle.

V_{DS} = 65 V, I_{DQ} = 1300 mA, T_C = 25°C

Frequency (MHz)	Output Power ¹ (dBm)	Gain ² (dB)	η _D ² (%)
960	65.4	20.8	76.1
1030	65.2	20.4	73.1
1090	65.1	20.4	73.1
1215	64.9	18.8	71.0

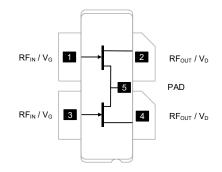
• V_{DS} = 50 V, I_{DQ} = 1300 mA, T_C = 25°C


Frequency (MHz)	Output Power ¹ (dBm)	Gain ² (dB)	η₀ ² (%)
960	64.1	19.9	71.2
1030	63.8	19.6	70.4
1090	63.7	19.1	70.7
1215	63.7	18.4	71.3

1. Load impedance tuned for maximum output power. Power is twice single side performance.

2. Load impedance tuned for maximum drain efficiency.

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.


MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

AC-1230B-4

AC-1230S-4

Functional Schematic

Pin Configuration

Pin #	Pin Name	Function
1, 3	$\mathrm{RF}_{\mathrm{IN}}$ / V_{G}	RF Input / Gate
2, 4	RF _{OUT} / V _D	RF Output / Drain
5	Flange ³	Ground / Source

3. The flange on the package bottom must be connected to RF, DC and thermal ground.

Ordering Information

Part Number	Package
MAPC-A1500-AS000	Bulk Quantity: Earless
MAPC-A1500-ASTR1	Tape and Reel: Earless
MAPC-A1500-ASSB1	Sample Board: Earless
MAPC-A1500-AB000	Bulk Quantity: Boltdown
MAPC-A1500-ABTR1	Tape and Reel: Boltdown
MAPC-A1500-ABSB1	Sample Board: Boltdown

1

MAPC-A1500

Rev. V5

MAPC-A1500

Rev. V5

RF Electrical Characteristics: $T_c = 25$ °C, $V_{DS} = 65$ V, $I_{DQ} = 1300$ mA Note: Performance in MACOM 1030-1090 MHz Evaluation Test Fixture, 50 Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Small Signal Gain	Pulsed ⁴ , 1.06 GHz	G _{SS}	-	18.3	-	dB
Saturated Output Power	Pulsed ⁴ , 1.06 GHz, 2.5 dB Gain Compression	P _{SAT}	-	64.2	-	dBm
Power Gain	Pulsed ⁴ , 1.06 GHz, 2.5 dB Gain Compression	G _{SAT}	-	18.5	-	dB
Saturated Drain Efficiency	Pulsed ⁴ , 1.06 GHz, 2.5 dB Gain Compression	η_{SAT}	-	66.2	-	%
Gain Variation (-40°C to +85°C)	Pulsed ⁴ , 1.06 GHz	ΔG	-	0.018	-	dB/∘C
Power Variation (-40°C to +85°C)	Pulsed ⁴ , 1.06 GHz	$\Delta P2.5 dB$	-	0.005	-	dB/°C
Power Gain	Pulsed ⁴ , 1.06 GHz, P _{OUT} = 64.1 dBm	G _P	-	18.9	-	dB
Drain Efficiency	Pulsed ⁴ , 1.06 GHz, P _{OUT} = 64.1 dBm	η	-	65.0	-	%
Input Return Loss	Pulsed ⁴ , 1.06 GHz, P _{OUT} = 64.1 dBm	IRL	-	-10	-	dB
Ruggedness: Output Mismatch	All phase angles	Ψ	VSWR = 7:1, No Damage		age	

RF Electrical Characteristics: $T_c = 25^{\circ}C$, $V_{DS} = 50 \text{ V}$, $I_{DQ} = 1300 \text{ mA}$ Note: Performance in MACOM 1030-1090 MHz Evaluation Test Fixture, 50 Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Small Signal Gain	Pulsed ⁴ , 1.06 GHz	G _{SS}	-	16.8	-	dB
Saturated Output Power	Pulsed ⁴ , 1.06 GHz, 2.5 dB Gain Compression	P _{SAT}	-	63.1	-	dBm
Power Gain	Pulsed ⁴ , 1.06 GHz, 2.5 dB Gain Compression	G _{SAT}	-	16.9	-	dB
Saturated Drain Efficiency	Pulsed ⁴ , 1.06 GHz, 2.5 dB Gain Compression	η_{SAT}	-	58	-	%
Gain Variation (-40°C to +85°C)	Pulsed ⁴ , 1.06 GHz	ΔG	-	0.015	-	dB/°C
Power Variation (-40°C to +85°C)	Pulsed ⁴ , 1.06 GHz	$\Delta P2.5 dB$	-	0.005	-	dB/°C
Power Gain	Pulsed ⁴ , 1.06 GHz, P _{OUT} = 63.0 dBm	G _P	-	17.5	-	dB
Drain Efficiency	Pulsed ⁴ , 1.06 GHz, P _{OUT} = 63.0 dBm	η	-	57.5	-	%
Input Return Loss	Pulsed ⁴ , 1.06 GHz, P _{OUT} = 63.0 dBm	IRL	-	-10	-	dB
Ruggedness: Output Mismatch	All phase angles	Ψ VSWR = 7:1, No Damage		age		

4. Pulse Details: 100 µs pulse width, 1% duty cycle.

MAPC-A1500

Rev. V5

RF Electrical Specifications: $T_A = 25$ °C, $V_{DS} = 65$ V, $I_{DQ} = 650$ mA Note: Performance in MACOM 1030-1090 MHz Production Test Fixture, 50 Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Power Gain	Pulsed ⁴ , 1.06 GHz, 2.5 dB Gain Compression	G _{SAT}	17.5	18.5	-	dB
Saturated Drain Efficiency	Pulsed ⁴ , 1.06 GHz, 2.5 dB Gain Compression	η_{SAT}	61.6	66.2	-	%
Saturated Output Power	Pulsed ⁴ , 1.06 GHz, 2.5 dB Gain Compression	P _{SAT}	63	64.2	-	dBm

DC Electrical Characteristics T_A = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Drain-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 130 V	I _{DLK}	-	-	266	mA
Gate-Source Leakage Current	V_{GS} = -8 V, V_{DS} = 0 V	I _{GLK}	-	-	266	mA
Gate Threshold Voltage	V _{DS} = 50 V, I _D = 266 mA	VT	-3.6	-3.1	-	V
Gate Quiescent Voltage	V_{DS} = 50 V, I_{D} = 1300 mA	V_{GSQ}	-	-2.85	-	V
On Resistance	V_{GS} = 2 V, I _D = 2000 mA	R _{ON}	-	0.013	-	Ω
Maximum Drain Current	V_{DS} = 7 V pulsed, pulse width 300 µs	I _{D, MAX}	-	253	-	А

3

MAPC-A1500

Rev. V5

Absolute Maximum Ratings 5,6,7,8,9

Parameter	Absolute Maximum
Drain Source Voltage, V _{DS}	130 V
Gate Source Voltage, V _{GS}	-10 to 3 V
Gate Current, I _G	266 mA
Storage Temperature Range	-65°C to +150°C
Case Operating Temperature Range	-40°C to +85°C
Channel Operating Temperature Range, T _{CH}	-40°C to +225°C
Absolute Maximum Channel Temperature	+250°C

5. Exceeding any one or combination of these limits may cause permanent damage to this device.

MACOM does not recommend sustained operation above maximum operating conditions. 6.

7.

8.

Operating at drain source voltage $V_{DS} < 55$ V will ensure MTTF > 2 x 10⁶ hours. Operating at nominal conditions with $T_{CH} \le 200^{\circ}$ C will ensure MTTF > 2 x 10⁶ hours. MTTF may be estimated by the expression MTTF (hours) = A $e^{[B + C/(T+273)]}$ where *T* is the channel temperature in degrees Celsius, A = 1, B = -38.215, and C = 26,343. 9

Thermal Characteristics¹⁰

Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance using Finite Element Analysis (Pulsed: 100µs, 10%)	V _{DS} = 65 V, T _C = 85°C, T _{CH} = 225°C	$R_{\theta}(FEA)$	0.080	°C/W
Thermal Resistance using Infrared Measurement of Die Surface Temperature	V _{DS} = 65 V, T _C = 85°C, T _{CH} = 225°C	R _θ (IR)	0.074	°C/W

10. Case temperature measured using thermocouple embedded in heat-sink. Contact local applications support team for more details on this measurement

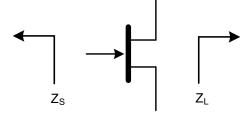
Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

MAPC-A1500


Rev. V5

65 V Pulsed¹³ Load-Pull Performance - Per Side Reference Plane at Device Leads

		Maximum Output Power							
			V _{DS} = 65 V, I _{DQ} = 650 mA, T _C = 25°C, P2.5dB						
Frequency (MHz)	Z _{SOURCE} (Ω)	Z _{LOAD} ¹¹ (Ω)	Gain (dB)	Р _{оит} (dBm)	Р _{оит} (W)	η₀ (%)	АМ/РМ (°)		
960	1.1 - j2.0	0.73 - j0.55	19.6	62.4	1740	65.8	32		
1030	2.3 - j1.8	0.68 - j0.61	19.0	62.2	1660	62.5	-3		
1090	2.6 - j0.8	0.64 - j0.62	18.7	62.1	1620	62.2	-32		
1215	1.3 + j0.1	0.62 - j0.73	18.2	61.9	1550	63.7	-81		

		Maximum Drain Efficiency							
			V_{DS} = 65 V, I_{DQ} = 650 mA, T_{C} = 25°C, P2.5dB						
Frequency (MHz)	Z _{SOURCE} (Ω)	Z _{LOAD} ¹² (Ω)	Gain (dB)	Р _{оит} (dBm)	Р _{оит} (W)	η₀ (%)	АМ/РМ (°)		
960	1.1 - j2.2	0.85 + j0.24	20.8	60.0	1000	76.1	14		
1030	2.6 - j1.5	0.87 + j0.08	20.4	60.0	1000	73.1	-30		
1090	2.5 - j0.1	0.86 + j0.0	20.4	59.5	890	73.1	-69		
1215	1.0 + j0.0	0.77 - j0.12	18.8	59.5	890	71.0	-106		

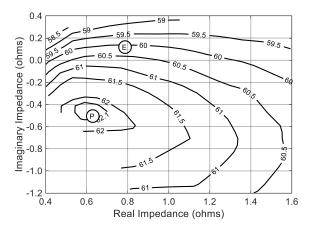
Impedance Reference

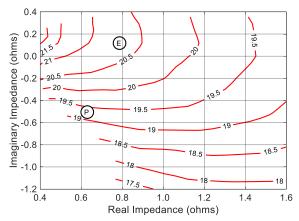
Z_{SOURCE} = Measured impedance presented to the input of the device at package reference plane.

Z_{LOAD} = Measured impedance presented to the output of the device at package reference plane.

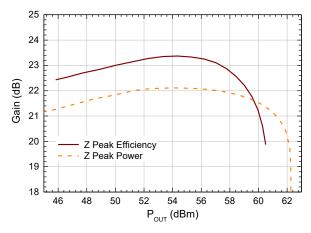
11. Load Impedance for optimum output power.

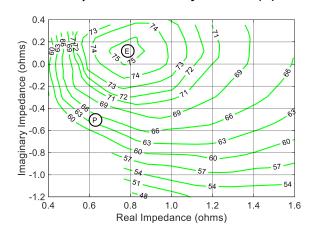
12. Load Impedance for optimum efficiency.

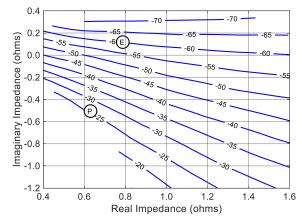

13. Pulse Details: 15 µs pulse width, 1% duty cycle

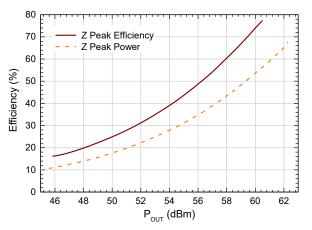

MAPC-A1500 Rev. V5

65 V Pulsed¹³ Load-Pull Performance 1090 MHz - Per Side


P2.5dB Loadpull Output Power Contours (dBm)


P2.5dB Loadpull Gain Contours (dB)


Gain vs. Output Power

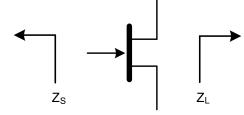

P2.5dB Loadpull Drain Efficiency Contours (%)

P2.5dB Loadpull AM/PM Contours (°)

Drain Efficiency vs. Output Power

⁶

MAPC-A1500


Rev. V5

50 V Pulsed¹³ Load-Pull Performance - Per Side Reference Plane at Device Leads

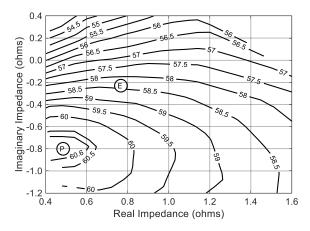
		Maximum Output Power							
		V_{DS} = 50 V, I_{DQ} = 650 mA, T_{C} = 25°C, P2.5dB							
Frequency (MHz)	Z _{SOURCE} (Ω)	Z _{LOAD} ¹¹ (Ω)	Gain (dB)	Р _{оит} (dBm)	Р _{оит} (W)	η₀ (%)	АМ/РМ (°)		
960	1.2 - j2.2	0.55 - j0.54	19.1	61.1	1290	62.6	35		
1030	2.6 - j1.2	0.54 - j0.81	18.4	60.8	1200	60.8	0		
1090	2.5 + j0.3	0.49 - j0.80	18.4	60.7	1175	60.8	-32		
1215	1.1 - j0.1	0.47 - j0.93	17.7	60.7	1175	59.7	-78		

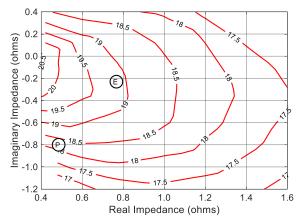
		Maximum Drain Efficiency						
		V _{DS} = 50 V, I _{DQ} = 650 mA, T _C = 25°C, P2.5dB						
Frequency (MHz)	Z _{SOURCE} (Ω)	Z _{LOAD} ¹² (Ω)	Gain (dB)	Р _{оυт} (dBm)	Р _{оит} (W)	η₀ (%)	АМ/РМ (°)	
960	1.2 - j2.2	0.91 + j0.07	19.9	58.5	710	71.2	7	
1030	2.6 - j1.2	0.78 - j0.16	19.6	58.5	710	70.4	-36	
1090	2.5 + j0.3	0.77 - j0.23	19.1	58.4	690	70.7	-69	
1215	1.1 - j0.1	0.68 - j0.38	18.4	58.4	690	71.3	-106	

Impedance Reference

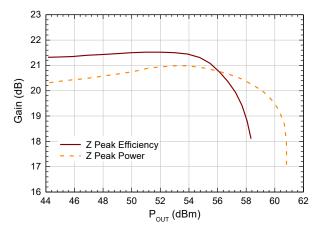
Z_{SOURCE} = Measured impedance presented to the input of the device at package reference plane.

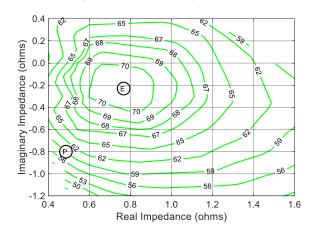
 Z_{LOAD} = Measured impedance presented to the output of the device at package reference plane.

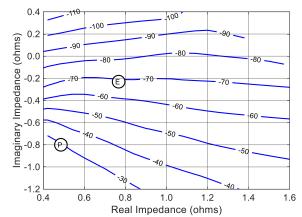

- 11. Load Impedance for optimum output power.
- 12. Load Impedance for optimum efficiency.

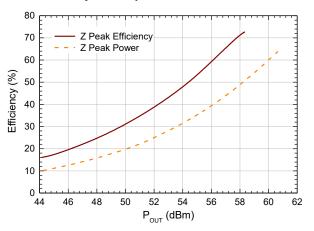

MAPC-A1500 Rev. V5

50 V Pulsed¹³ Load-Pull Performance 1090 MHz - Per Side


P2.5dB Loadpull Output Power Contours (dBm)


P2.5dB Loadpull Gain Contours (dB)


Gain vs. Output Power


P2.5dB Loadpull Drain Efficiency Contours (%)

P2.5dB Loadpull AM/PM Contours (°)

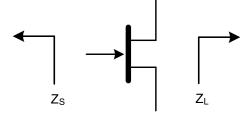
Drain Efficiency vs. Output Power

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

For further information and support please visit: <u>https://www.macom.com/support</u>

⁸

MAPC-A1500


Rev. V5

28 V Pulsed¹⁴ Load-Pull Performance - Per Side Reference Plane at Device Leads

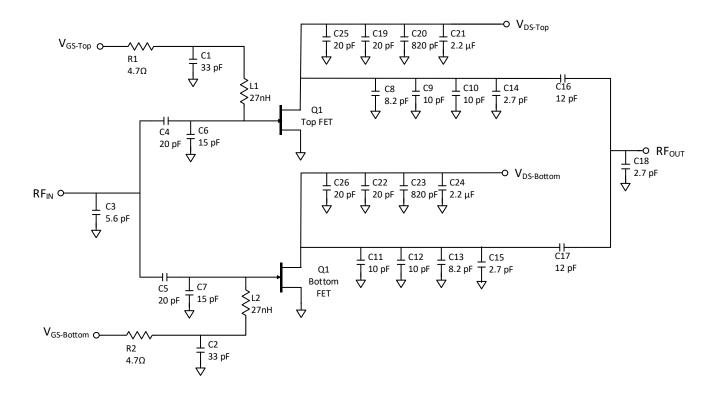
		Maximum Output Power							
		V _{DS} = 28 V, I _{DQ} = 650 mA, T _C = 25°C, P2.5dB							
Frequency (MHz)	Z _{SOURCE} (Ω)	Z _{LOAD} ¹¹ (Ω)	Gain (dB)	Р _{оит} (dBm)	Р _{оит} (W)	η₀ (%)	АМ/РМ (°)		
960	0.50 - j1.5	0.33 - j0.55	16.1	57.4	554	57.8	-0.2		
1030	1.1 - j1.8	0.28 - j0.61	16.4	57.8	607	58.6	-2.6		
1090	1.6 + j1.9	0.27 - j0.65	16.0	57.5	567	57.3	-5.0		
1215	2.0 - j0.5	0.28 - j0.75	15.6	57.4	550	60.6	-7.8		

		Maximum Drain EfficiencyV _{DS} = 28 V, I _{DQ} = 650 mA, T _C = 25°C, P2.5dB						
Frequency (MHz)	Z _{SOURCE} (Ω)	Z _{LOAD} ¹² (Ω)	Gain (dB)	Р _{оυт} (dBm)	Р _{оит} (W)	η₀ (%)	АМ/РМ (°)	
960	0.50 - j1.5	0.62 - j0.20	17.2	54.8	301	68.3	-7.3	
1030	1.1 - j1.8	0.60 - j0.17	16.9	54.5	280	70.8	-12.8	
1090	1.6 + j1.9	0.54 - j0.29	16.7	54.3	268	69.3	-21.3	
1215	2.0 - j0.5	0.50 - j0.36	16.0	54.5	282	71.6	-10.7	

Impedance Reference

Z_{SOURCE} = Measured impedance presented to the input of the device at package reference plane.

 Z_{LOAD} = Measured impedance presented to the output of the device at package reference plane.


11. Load Impedance for optimum output power.

Load Impedance for optimum efficiency.
Pulse Details: 50 µs pulse width, 1% duty cycle.

MAPC-A1500 Rev. V5

Evaluation Test Fixture and Recommended Tuning Solution 1.03 - 1.09 GHz

Description

Parts measured on evaluation board (20-mil thick RO4350). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

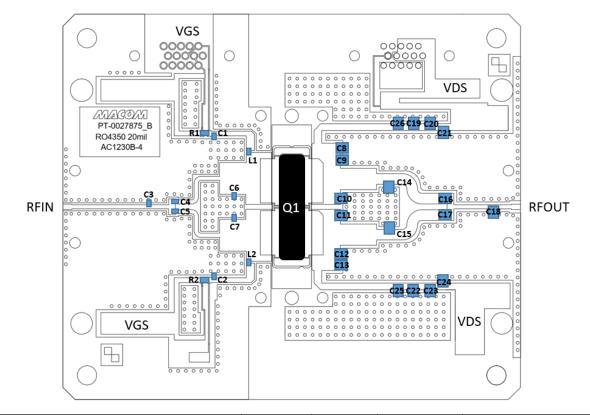
Bias Sequencing* Turning the device ON

- 1. Set V_{GS} to pinch-off (V_P).
- 2. Turn on V_{DS} to nominal voltage (65 V).
- 3. Increase V_{GS} until I_{DS} current is reached.
- 4. Apply RF power to desired level.

Turning the device OFF

- 1. Turn the RF power OFF.
- 2. Decrease V_{GS} down to V_P pinch-off.
- 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS}.

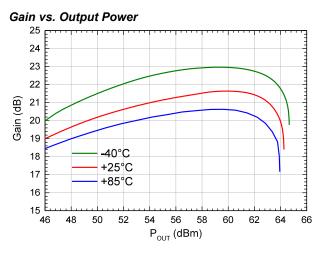
* For an integrated power management solution please contact MACOM support regarding the MABC-11040.


10

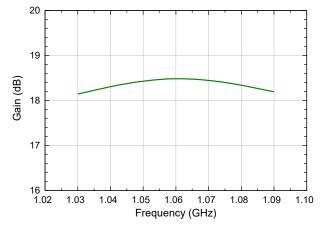
MAPC-A1500

Rev. V5

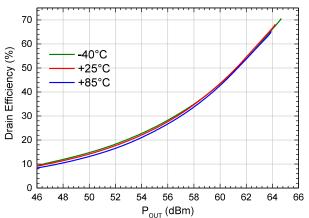
Evaluation Test Fixture and Recommended Tuning Solution 1.03 - 1.09 GHz

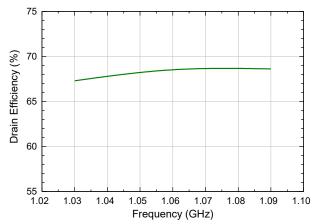


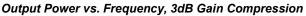
Reference Designator	Value	Tolerance	Manufacturer	Part Number	
C1, C2	33 pF	±5%	Murata	GQM2195C2E330JB12	
C3	5.6 pF	± 0.1 pF	Murata	GQM2195C2E5R6BB12	
C4, C5	20 pF	±5%	Murata	GQM2195C2E200JB12	
C6, C7	15 pF	±5%	Murata	GQM2195C2E150JB12	
C8, C13	8.2 pF	±5%	Murata	GQM22M5C2H8R2JB01	
C9 - C12	10 pF	±5%	Murata	GQM22M5C2H100JB01	
C14, C15, C18	2.7 pF	± 0.1 pF	Murata	GQM22M5C2H2R7BB01	
C16, C17	12 pF	± 5 %	Murata	GQM22M5C2H120JB01	
C19, C22, C25, C26	20 pF	±5%	Murata	GQM22M5C2H200JB01	
C20, C23	820 pF	±5%	ATC	800B821JT500XT	
C21, C24	2.2 µF	± 10 %	Murata	KRM55TR72E225MH01L	
L1, L2	27 nH	± 5 %	CoilCraft	1008CS-270XJL	
R1, R2	4.7 Ω	±1%	Yageo	RT0805FRE074R7L	
Q1	MACOM GaN Power Amplifier MAPC-A			MAPC-A1500	
РСВ	RO4350, 20 mil, 1 oz. Cu, Au Finish				

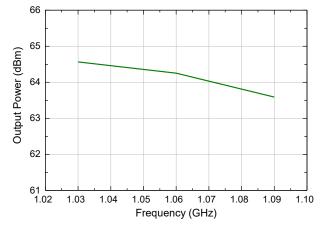


MAPC-A1500 Rev. V5


Typical Performance Curves as Measured in the 1.03 - 1.09 GHz Evaluation Test Fixture: Pulsed⁴ 1.06 GHz, V_{DS} = 65 V, I_{DQ} = 1300 mA, T_C = 25°C (Unless Otherwise Noted)


Gain vs. Frequency, 3dB Gain Compression




Drain Efficiency vs. Output Power

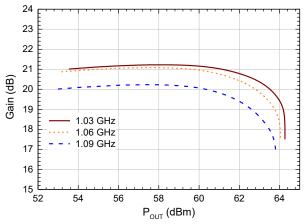
Drain Efficiency vs. Frequency, 3dB Gain Compression

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

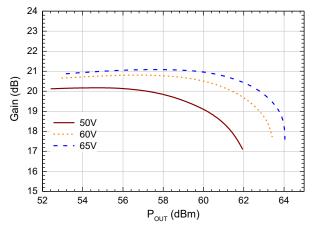
For further information and support please visit: <u>https://www.macom.com/support</u>

¹²

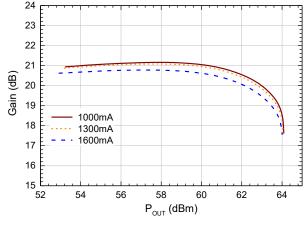
GaN Amplifier 65 V, 2600 W 960 - 1215 MHz

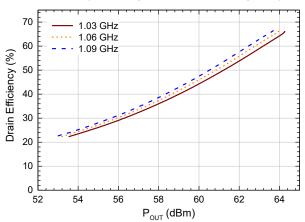


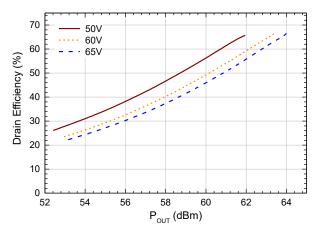
MACOM PURE CARBIDE

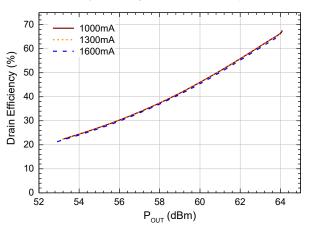

MAPC-A1500 Rev. V5

Typical Performance Curves as Measured in the 1.03 - 1.09 GHz Evaluation Test Fixture: Pulsed⁴ 1.06 GHz, V_{DS} = 65 V, I_{DQ} = 1300 mA, T_{C} = 25°C (Unless Otherwise Noted)


Gain vs. Output Power and Frequency


Gain vs. Output Power and VDS


Gain vs. Output Power and IDQ


Drain Efficiency vs. Output Power and Frequency

Drain Efficiency vs. Output Power and V_{DS}

Drain Efficiency vs. Output Power and IDQ

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support

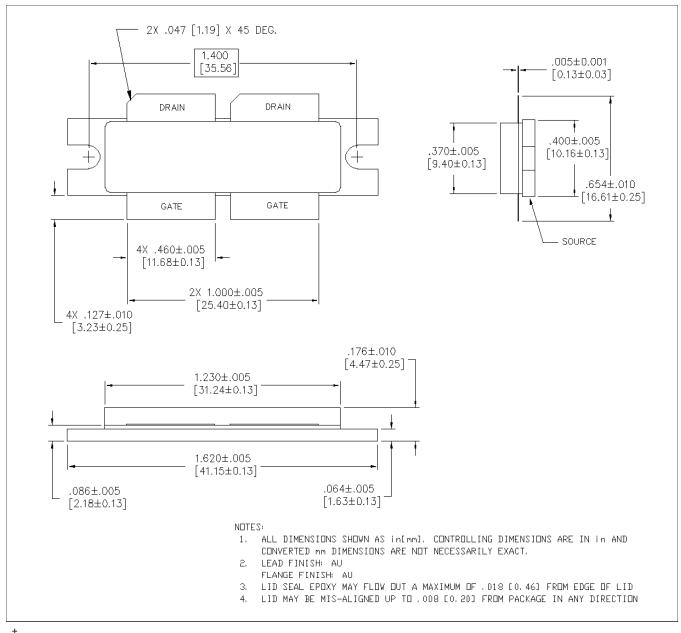

¹³

MAPC-A1500

Rev. V5

Lead-Free AC-1230S-4 Package Dimensions[†]

[†] Reference Application Note AN0004363 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 3 requirements. Plating is Au.


¹⁴

MAPC-A1500 Rev. V5

MACOM PURE CARBIDE.

Lead-Free AC-1230B-4 Package Dimensions[†]

[†] Reference Application Note AN0004363 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 3 requirements. Plating is Au.