

MASW-010647

Rev. V3

Features

- Low Insertion Loss
- High Isolation
- Low Parasitic Capacitance and Inductance
- Fully Monolithic Die, Integrated Bias Network
- Glass Encapsulated Construction
- Greater than 20 W CW Power Handling @ +85°C
- Silicon Nitride Passivation
- Polymer Scratch Protection
- RoHS* Compliant

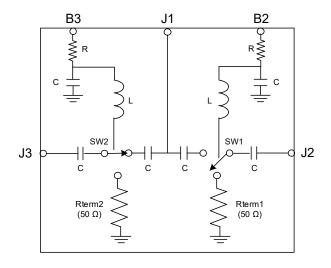
Applications

Aerospace & Defense

Description

The MASW-010647 is a monolithic, terminated Silicon PIN diode SPDT switch die designed for X-Band high power, high performance applications. The switch handles greater than 20 W of CW power over the 8.0 - 10.5 GHz frequency band.

The device is fabricated using MACOM's patented HMIC process, which allows for the integration of silicon pedestals that embed series and shunt diodes in low loss, low dispersion glass. The switch offers low insertion loss of 0.8 dB as well as high isolation performance of 37 dB. The device integrates a bias network to allow for simplified bias application and switch control.


The topside is fully encapsulated with silicon nitride passivation and an additional polymer layer for scratch and impact protection. These protective coatings prevent damage to the semiconductor junctions and metal air bridges during handling and assembly.

Ordering Information¹

Part Number	Package
MASW-010647-13950G	Die in Gel Pack
MASW-010647-13950W	Die in Waffle Pack

1. Die quantity varies.

Functional Diagram

Pin Configuration²

Pin	Function
J1	RF _{COMMON}
J2	RF _{OUT}
J3	RF _{OUT}
B2	Bias of J2
В3	Bias of J3

^{2.} The exposed metallization on the chip bottom must be connected to RF, DC and thermal ground.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MASW-010647

Rev. V3

Electrical Specifications: $T_A = +25^{\circ}C$, $Z_0 = 50 \Omega$, $P_{IN} = 0$ dBm (unless otherwise noted)

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Insertion Loss (-5 V ³ / 0 mA Bias)	8.0 GHz 8.5 GHz 9.5 GHz 10.5 GHz	dB	_	0.70 0.70 0.75 0.85	0.9 1.0 1.1
Input to Output Isolation (+5 V / 55 mA Bias)	8.0 GHz 8.5 GHz 9.5 GHz 10.5 GHz	dB	— 32 34 35	33 35 37 39	_
Input Return Loss	8.0 GHz 8.5 GHz 9.5 GHz 10.5 GHz	dB	 19 17 13	25 28 24 18	_
Return Loss (Termination) (+5 V / 55 mA Bias)	8.0 GHz 8.5 GHz 9.5 GHz 10.5 GHz	dB	 12 12 	14 18 31 14	_
Input IP3	10 GHz, +20 dBm, 10 & 100 MHz spacing	dBm	_	>60	_
Switching Speed ⁴	10 GHz, +/- 4 V, PW 500 ns, 50% duty cycle	ns	_	130	_

^{3.} R. Caverly and G. Hiller, "Establishing the Minimum Reverse Bias for a P-I-N Diode in a High Power Switch," IEEE Transactions on Microwave Theory and Techniques, Vol.38, No.12, December 1990

Bias Control³

Optimal operation is achieved by simultaneous application of negative DC voltage to the low loss switch path and positive DC voltage to the isolating switch path.

In the low loss path, the diodes are reverse biased. In the isolating path, the diodes are forward biased. The switch incorporates internal current limiting resistors.

Minimum Reverse Bias Required:

At X-Band, with a 1:1 match, 5 V of reverse bias is required. With a 4:1 match, 10 V of reverse bias is required.

However MACOM recommends 30 V of reverse bias to achieve optimal operating conditions.

Driver Connections

DC Control Voltages (DC Currents)		Condition of RF Output		
B2	В3	J1-J2	J1-J3	
-5 V ³ (0 mA)	+5 V (55 mA typ.)	Low Loss	Isolation	
+5 V (55 mA typ.)	-5 V ³ (0 mA)	Isolation	Low Loss	

^{4.} Typical switching speed measured from 10% to 90 % of detected RF signal driven by TTL compatible drivers.

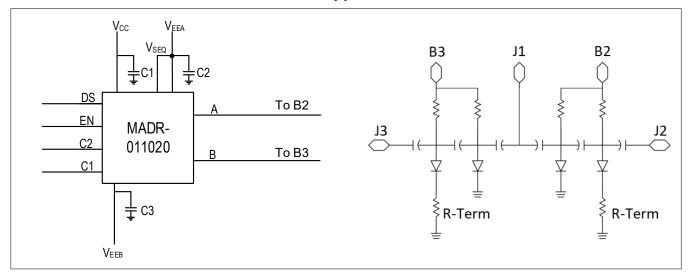
MASW-010647

Rev. V3

Absolute Maximum Ratings^{5,6}

Parameter	Absolute Maximum
DC Reverse Voltage	50 V
Bias Current	100 mA @ +85°C
RF CW Incident Power (Transmission) (Termination)	20 W @ +85°C 2 W @ +85°C
Junction Temperature	+175°C
Operating Temperature	-40°C to +85°C
Storage Temperature	-65°C to +150°C

^{5.} Exceeding any one or combination of these limits may cause permanent damage to this device.


Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

MASW-010647 with MADR-011020 Driver Application Schematic⁷

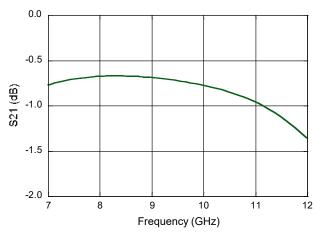
7. V_{CC} = +5 V and V_{EEB} = -30 V

Switch Minimum Reverse Bias Voltage^{3,8}

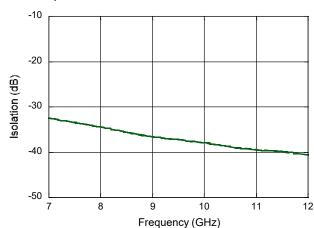
Frequency (GHz)	DC Voltage (V) B2 & B3
8.0	-6
9.0	-6
10.0	-5
10.5	-5

^{8.} Calculated (see note 3) minimum DC bias voltage to maintain low loss under 20 W of power with 1.5:1 VSWR.

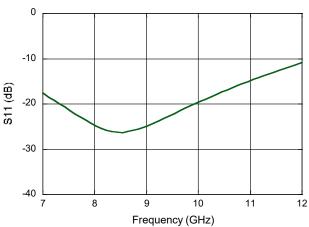
MACOM does not recommend sustained operation near these survivability limits.

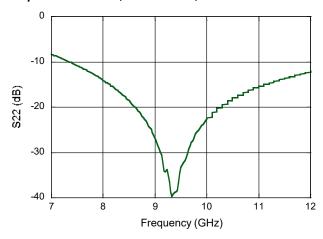


MASW-010647

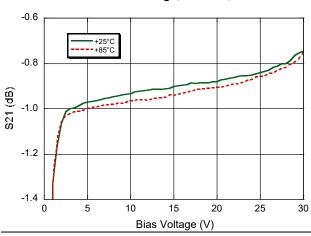

Rev. V3

Typical Performance: $T_A = +25$ °C

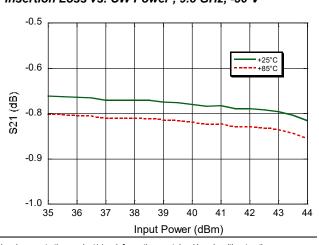

Insertion Loss, -5 V


Isolation, +5 V

Input Return Loss, Transmission, +/-5 V



Output Return Loss, Termination, +5 V

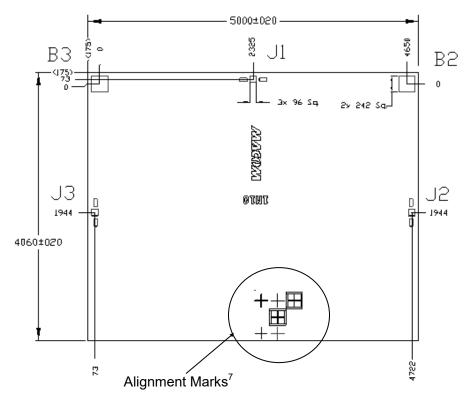


Typical Measured Large Signal Performance

Insertion Loss vs. Bias Voltage, 9.5 GHz, 43 dBm CW

Insertion Loss vs. CW Power, 9.5 GHz, -30 V

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.


Visit www.macom.com for additional data sheets and product information.

MASW-010647

Rev. V3

Outline Drawing

All dimensions shown in microns (μ m). Thickness is 125 \pm 10 μ m.

9. Most switches will not have the alignment marks pictured above. Switches with alignment marks have the same quality and reliability rating as switches without the alignment marks and cannot be returned as defective.