

## **General Description**

The MAX31329 low-current, real-time clock (RTC) is a timekeeping device that provides timekeeping current in nanoamperes, thus extending battery life. The MAX31329 incorporates an integrated 32.768kHz crystal, which eliminates the need for an external crystal. This device is accessed through an I<sup>2</sup>C serial interface. The MAX31329 features one digital Schmitt trigger input (DIN) and generates an interrupt output on a falling or rising edge of this digital input. An integrated power-on reset function ensures deterministic default register status upon power-up. Other features include two time-of-day alarms, interrupt outputs, a programmable square-wave output, and a serial bus timeout mechanism.

The clock/calendar provides seconds, minutes, hours, day, date, month, and year information. The date at the end of the month is automatically adjusted for months with fewer than 31 days, including corrections for leap year. The clock operates in either 24-hour or 12-hour format. The MAX31329 also includes a clock input for synchronization. When a reference clock (e.g., 32kHz, 50Hz/60Hz power line, GPS 1pps) is present at the CLKIN pin and the enable external clock input bit (ENCLKIN) is set to 1, the MAX31329 RTC is frequencylocked to the external clock and the clock accuracy is determined by the external source.

The device is available in a lead (Pb)-free/RoHScompliant, 10-pin, 5mm x 5mm LGA package. The device supports the  $-40^{\circ}$ C to  $+85^{\circ}$ C extended temperature range.

## **Applications**

- Industrial Equipment
- Test and Measurement Equipment
- Energy Meters
- Medical Devices
- Portable Instruments
- Factory Automation
- IoT Devices
- Surveillance Cameras
- Servers

## **Benefits and Features**

- Increases Battery Life
  - 240nA Timekeeping Current
  - Trickle Charger for External Supercapacitor or Rechargeable Battery
- Provides Flexible Configurability
  - A Schmitt Trigger Input for Event Detection
  - Programmable Square-Wave Output for Clock Monitoring
  - Two Interrupt Pins for Multiple Wakeup Configurations
  - Clock Input Pin for External Clock
     Synchronization
- Saves Board Space
  - Integrated Crystal and Load Capacitors Tuned to ±5ppm Typical Clock Accuracy
  - 5mm x 5mm, 10-Pin LGA Package
- Value-Added Features for Ease-of-Use
- +1.6V to +5.5V Operating Voltage Range
- Two Time-of-Day Alarms
- Countdown Timer with Repeat and Pause
   Functions
- · 64-Byte RAM for User Data Storage
- Integrated Protection
  - · Power-on Reset for Default Configuration
  - Automatic Switchover to Backup Battery or Supercapacitor on Power-Fail
  - · Lockup-Free Operation with Bus Timeout

Ordering Information appears at end of data sheet.

19-100992; Rev 1; 12/21

© 2021 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. One Analog Way, Wilmington, MA 01887 U.S.A. | Tel: 781.329.4700 | © 2021 Analog Devices, Inc. All rights reserved.



## Simplified Block Diagram

## **Absolute Maximum Ratings**

| Voltage Range on Any Pin Relative to Ground0.3V to +6V                  |
|-------------------------------------------------------------------------|
| Continuous Power Dissipation (Multilayer Board ( $T_A = +70^{\circ}C$ , |
| derate 6.88mW/°C above +70°C) 550.02mW                                  |
| Operating Temperature Range40°C to +85°C                                |

| Junction Temperature           | +125°C        |
|--------------------------------|---------------|
| Storage Temperature Range      | 55°C to +85°C |
| Soldering Temperature (reflow) | +260°C        |

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## **Package Information**

| Package Code                           | L1055M+2C        |  |  |  |  |
|----------------------------------------|------------------|--|--|--|--|
| Outline Number                         | <u>21-100481</u> |  |  |  |  |
| Land Pattern Number                    | <u>90-100169</u> |  |  |  |  |
| Thermal Resistance, Multilayer Board:  |                  |  |  |  |  |
| Junction to Ambient (θ <sub>JA</sub> ) | 145.45°C/W       |  |  |  |  |
| Junction to Case (θ <sub>JC</sub> )    | 66.67°C/W        |  |  |  |  |

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to <u>www.maximintegrated.com/thermal-tutorial</u>.

## **Electrical Characteristics**

| $(V_{CC} = +1.6V \text{ to } +5.5V = \text{typical values at } V_{CC}$ | = +3.0V unless otherwise noted 1 imits are            | 100% tested at $T_{\Lambda} = +25^{\circ}C$ . Note 1) |
|------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| $(V_{C}) = \pm 1.0V (0 \pm 5.5V) = (v)(ca) values at V_{C}$            | $= +3.0^{\circ}$ , unless otherwise noted. Limits are | 100% lesled al 1A = +25 C. <u>Note 1</u> .)           |

|                                        | -                 |                              |                                              |     |     |     |       |
|----------------------------------------|-------------------|------------------------------|----------------------------------------------|-----|-----|-----|-------|
| PARAMETER                              | SYMBOL            | CON                          | CONDITIONS                                   |     |     | MAX | UNITS |
| DC CHARACTERISTICS                     |                   | -                            |                                              |     |     |     |       |
| Operating Voltage<br>Range             | V <sub>CC</sub>   | Full operation ( <u>Not</u>  | <u>e 2</u> )                                 | 1.6 |     | 5.5 | V     |
|                                        |                   | CLKIN = GND or               | V <sub>CC</sub> = +1.6V<br>( <u>Note 3</u> ) |     | 200 | 500 |       |
| Timekeeping Current                    | ICCT              | $CLKIN = V_{CC}$             | $V_{CC} = +3.0V$                             |     | 240 | 550 | nA    |
|                                        |                   |                              | $V_{CC} = +5.5V$                             |     | 300 | 700 | 1     |
| Data Retention Current                 | IBATDR            | (Oscillator stopped          | and I <sup>2</sup> C enabled)                |     | 5   |     | nA    |
| Maximum Supply<br>Power-Up Slew Rate   | T <sub>VCCR</sub> |                              |                                              |     | 5   |     | V/ms  |
| Maximum Supply<br>Switchover Slew Rate | T <sub>VCCF</sub> |                              |                                              |     | 1.4 |     | V/ms  |
| BATTERY BACKUP AND                     | THRESHOLD         |                              |                                              |     |     |     |       |
| Backup Supply Voltage                  | VBAT              |                              |                                              | 1.6 |     | 5.5 | V     |
|                                        |                   | V <sub>TH1</sub>             |                                              |     | 1.8 |     |       |
| Power-Fail Threshold<br>Voltage        | V <sub>PF</sub>   | V <sub>TH2</sub>             |                                              |     | 2.0 |     | V     |
|                                        |                   | V <sub>TH3</sub>             |                                              |     | 2.4 |     |       |
| Trickle-Charge Current-                | R1                | Measured at V <sub>BAT</sub> | = 0V                                         |     | 3.3 | kΩ  |       |
| Limiting Resistance                    | R2                | Measured at V <sub>BAT</sub> |                                              | 6.4 |     |     |       |

| PARAMETER                                              | SYMBOL              | CONDITIONS                               | MIN                      | TYP                       | MAX               | UNITS |
|--------------------------------------------------------|---------------------|------------------------------------------|--------------------------|---------------------------|-------------------|-------|
|                                                        | R3                  | Measured at V <sub>BAT</sub> = 0V        |                          | 11.3                      |                   |       |
| SCHMITT TRIGGER INP                                    | UT (DIN)            | -                                        |                          |                           |                   | •     |
|                                                        |                     | $V_{CC} = 5.5V$                          |                          | 2.8                       | 3.2               |       |
| Rising Input Threshold                                 | $V_{T+}$            | $V_{CC} = 3.0V$                          |                          | 1.65                      | 2                 | V     |
| Voltage                                                |                     | V <sub>CC</sub> = 1.6V                   |                          | 0.9                       | 1.25              |       |
|                                                        |                     | V <sub>CC</sub> = 5.5V                   | 1.1                      | 1.6                       |                   |       |
| Falling Input Threshold                                | V <sub>T-</sub>     | V <sub>CC</sub> = 3.0V                   | 0.7                      | 0.9                       |                   | V     |
| Voltage                                                |                     | V <sub>CC</sub> = 1.6V                   | 0.35                     | 0.6                       |                   |       |
| Input Leakage                                          | ILI                 |                                          | -0.1                     |                           | +0.1              | μA    |
| LOGIC INPUTS AND OU                                    | TPUTS               |                                          |                          |                           |                   |       |
|                                                        |                     | V <sub>CC</sub> = 1.6V                   | 0.75 x                   |                           | V <sub>CC</sub> + |       |
|                                                        |                     | (Note 1, Note 2)                         | V <sub>CC</sub>          |                           | 0.3               |       |
| Logic 1 Input                                          | V <sub>IH</sub>     | V <sub>CC</sub> = 3.01V                  | 0.7 x                    |                           | V <sub>CC</sub> + | V     |
| 209.0                                                  |                     | ( <u>Note 1, Note 2</u> )                | V <sub>CC</sub>          |                           | 0.3               | -     |
|                                                        |                     | $V_{CC} = 5.5V$                          | 0.7 x<br>V <sub>CC</sub> |                           | V <sub>CC</sub> + |       |
|                                                        |                     | ( <u>Note 1</u> , <u>Note 2</u> )        |                          |                           | 0.3<br>0.3 x      |       |
| Logic 0 Input                                          | $V_{IL}$            | ( <u>Note 1</u> , <u>Note 2</u> )        | -0.3                     |                           | V <sub>CC</sub>   | V     |
| Input Leakage (SCL,<br>INTA/CLKIN)                     | IIL                 | Input clock enabled                      | -0.1                     |                           | +0.1              | μA    |
| Output Leakage<br>(INTA/CLKIN,<br>INTB/CLKOUT)         | Ι <sub>Ο</sub>      | Input clock disabled                     | -1                       |                           | +1                | μA    |
| Output Logic 1<br>(INTB/CLKOUT)                        | I <sub>ОН</sub>     | $V_{OH} = +1.0V, V_{CC} \ge 1.6V$        | -0.6                     |                           |                   | mA    |
| Output Logic 0 (SDA,<br>INTA/CLKIN,<br>INTB/CLKOUT)    | I <sub>OL</sub>     | $V_{OL} = +0.4V, V_{CC} \ge 1.6V$        | 2                        |                           |                   | mA    |
| AC CHARACTERISTICS                                     |                     |                                          |                          |                           |                   |       |
| SCL Clock Frequency                                    | f <sub>SCL</sub>    | ( <u>Note 4</u> )                        | 10                       |                           | 400               | kHz   |
| Bus Free Time Between<br>a STOP and START<br>Condition | t <sub>BUF</sub>    |                                          | 1.3                      |                           |                   | μs    |
| Hold Time (Repeated)<br>START Condition                | <sup>t</sup> HD:STA | ( <u>Note 5</u> )                        | 0.6                      |                           |                   | μs    |
| Low Period of SCL<br>Clock                             | t <sub>LOW</sub>    |                                          | 1.3                      |                           |                   | μs    |
| High Period of SCL<br>Clock                            | <sup>t</sup> HIGH   |                                          | 0.6                      |                           |                   | μs    |
| Data Hold Time                                         | <sup>t</sup> HD:DAT | ( <u>Note 6</u> , <u>Note 7</u> )        | 0                        |                           | 0.9               | μs    |
| Data Setup Time                                        | <sup>t</sup> SU:DAT | V <sub>CC</sub> = 3.0V ( <u>Note 8</u> ) | 100                      |                           |                   | ns    |
| Setup Time for a<br>Repeated START<br>Condition        | <sup>t</sup> SU:STA |                                          | 0.6                      |                           |                   | μs    |
| Minimum Rise Time of<br>Both SDA and SCL<br>Signals    | <sup>t</sup> RMIN   | ( <u>Note 9</u> )                        |                          | 20 +<br>0.1C <sub>B</sub> |                   | ns    |

 $(V_{CC} = +1.6V \text{ to } +5.5V = \text{typical values at } V_{CC} = +3.0V, \text{ unless otherwise noted. Limits are 100% tested at } T_A = +25^{\circ}C.$  Note 1.)

| PARAMETER                                            | SYMBOL               | CONDITIONS                          | MIN | TYP                       | MAX | UNITS |
|------------------------------------------------------|----------------------|-------------------------------------|-----|---------------------------|-----|-------|
| Maximum Rise Time of<br>Both SDA and SCL<br>Signals  | t <sub>RMAX</sub>    |                                     |     | 300                       |     | ns    |
| Minimum Fall Time for<br>Both SDA and SCL<br>Signals | <sup>t</sup> FMIN    | ( <u>Note 9</u> )                   |     | 20 +<br>0.1C <sub>B</sub> |     | ns    |
| Maximum Fall Time for<br>Both SDA and SCL<br>Signals | <sup>t</sup> FMAX    |                                     |     | 300                       |     | ns    |
| Setup Time for STOP<br>Condition                     | t <sub>SU:STO</sub>  |                                     | 0.6 |                           |     | μs    |
| Maximum Capacitive<br>Load for Each Bus Line         | CB                   | ( <u>Note 9</u> )                   |     | 400                       |     | pF    |
| I/O Capacitance                                      | C <sub>I/O</sub>     | ( <u>Note 10</u> )                  |     | 10                        |     | pF    |
| SCL Spike Suppression                                | t <sub>SP</sub>      | ( <u>Note 10</u> )                  |     | 37                        |     | ns    |
| Oscillator Stop Flag<br>(OSF) Delay                  | tOSF                 | ( <u>Note 11</u> )                  |     | 30                        | 150 | ms    |
| Timeout Interval                                     | <sup>t</sup> TIMEOUT | ( <u>Note 12</u> )                  | 25  |                           | 35  | ms    |
| Nominal Frequency                                    | f <sub>O</sub>       |                                     |     | 32.768                    |     | kHz   |
| Frequency Accuracy                                   | ∆f/f <sub>O</sub>    | $V_{CC} = 3.0V, T_A = +25^{\circ}C$ |     | ±5                        |     | ppm   |

 $(V_{CC} = +1.6V \text{ to } +5.5V = \text{typical values at } V_{CC} = +3.0V, \text{ unless otherwise noted. Limits are 100% tested at } T_A = +25^{\circ}C.$  Note 1.)

Note 1: Limits at -40°C and +85°C are guaranteed by design; not production tested.

Note 2: Voltage referenced to ground.

- Note 3: Specified with I<sup>2</sup>C bus inactive. Oscillator operational. (ENCLKO = 0, ENCLKIN = 0).
- Note 4: The minimum SCL clock frequency is limited by the bus timeout feature, which resets the serial bus interface if SCL is held low for t<sub>TIMEOUT</sub>.
- **Note 5:** After this period, the first clock pulse is generated.
- Note 6: A device must internally provide a hold time of at least 300ns for the SDA signal (referred to the V<sub>IHMIN</sub> of the SCL signal) to bridge the undefined region of the falling edge of SCL.

Note 7: The maximum t<sub>HD:DAT</sub> need only be met if the device does not stretch the low period (t<sub>LOW</sub>) of the SCL signal.

Note 8: A fast-mode (400kHz) device can be used in a standard-mode (100kHz) system, but the requirement t<sub>SU:DAT</sub> ≥ 250ns must then be met. This is automatically the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line t<sub>RMAX</sub> + t<sub>SU:DAT</sub> = 1000 + 250 = 1250ns before the SCL line is released.

- **Note 9:** C<sub>B</sub> is the total capacitance of one bus line, including all connected devices, in pF.
- Note 10: Guaranteed by design; not 100% production tested.
- Note 11: The parameter t<sub>OSF</sub> is the period of time the oscillator must be stopped for the OSF flag to be set over V<sub>CC</sub> range.
- Note 12: The device I<sup>2</sup>C interface is in reset state and can receive a new START condition when SCL is held low for at least t<sub>TIMEOUTMAX</sub>. Once the device detects this condition, the SDA output is released. The oscillator must be running for this function to work.

# **Typical Operating Characteristics**

 $(T_A = +25^{\circ}C, unless otherwise noted.)$ 





CLKOUT/INTB OUTPUT VOLTAGE HIGH vs. OUTPUT CURRENT





# **Pin Configuration**



## **Pin Descriptions**

| PIN  | NAME            | FUNCTION                                                                                                                                                                                                                                                                                                 |
|------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | V <sub>CC</sub> | Supply Voltage                                                                                                                                                                                                                                                                                           |
| 2    | GND             | Ground Connection                                                                                                                                                                                                                                                                                        |
| 3    | VBAT            | Backup Battery Input and Trickle Charger Output. Connect to GND when backup battery is not used.                                                                                                                                                                                                         |
| 4    | DIN             | Digital Schmitt Trigger (Event Detection) Input                                                                                                                                                                                                                                                          |
| 5, 6 | NC              | Not Connected                                                                                                                                                                                                                                                                                            |
| 7    | SDA             | Serial-Data Input/Output. SDA is the input/output pin for the I <sup>2</sup> C serial interface. The SDA pin is open-drain and requires an external pullup resistor.                                                                                                                                     |
| 8    | SCL             | Serial-Clock Input. SCL is used to synchronize data movement on the serial interface.                                                                                                                                                                                                                    |
| 9    | INTB/CLK<br>OUT | Square-Wave Clock or Active-Low Interrupt Output. This pin is used to output a programmable square wave or an alarm interrupt signal. This is a CMOS push-pull output and does not require an external pullup resistor. If not used, this pin can be left unconnected. See <u>Table 2</u> .              |
| 10   | INTA/CLKI<br>N  | Clock Input/Active-Low Interrupt Output. This I/O pin is used to output an alarm interrupt or accept an external clock input to drive the RTC counter. In the output mode, this is an open-drain and requires an external pullup resistor. If not used, connect this pin to ground. See <u>Table 2</u> . |

## **Detailed Description**

The MAX31329 low-current, real-time clock (RTC) is a timekeeping device that provides nanoamperes timekeeping current, extending battery life. The clock/calendar provides seconds, minutes, hours, day, date, month, and year information. The date at the end of the month is automatically adjusted for each month, including corrections for leap year through 2199. The clock operates in either 24-hour or 12-hour format.

The MAX31329 is accessed through an I<sup>2</sup>C serial interface. The device features one digital Schmitt trigger input and generates an interrupt output on a falling or rising edge of this input (DIN). An integrated power-on reset function ensures deterministic default register status upon power-up. Soft reset is required after a brownout or brief blackout. Other features include two time-of-day alarms, two interrupts, a programmable square-wave output, a countdown timer, and a bus timeout mechanism that resets the I<sup>2</sup>C bus if it remains inactive for a minimum of t<sub>TIMEOUT</sub>. The MAX31329 uses an integrated 32.768kHz crystal. The oscillator circuit does not require any external resistors or capacitors to operate. The MAX31329 also accepts an external clock reference for synchronization. The external clock can be a 32.768kHz, 50Hz, 60Hz, or 1Hz source. When the enable oscillator bit (ENOSC) is set to 1, the MAX31329 uses the oscillator for timekeeping. If the enable external clock input bit (ENCLKIN) is set to 1, the time base derived from the oscillator is compared to the 1Hz signal that is derived from the CLKIN signal. The conditioned signal drives the RTC time and date counters. When the external clock is lost or when the frequency differs more than ±0.8% from the crystal frequency, the loss-of-sync (LOS) flag is asserted.

Address and data are transferred serially through an I<sup>2</sup>C serial interface.

#### **Clock/Calendar**

The time and calendar information are obtained by reading the appropriate I<sup>2</sup>C registers. The time and calendar data are set or initialized by writing to the appropriate time/date registers. The contents of the time and calendar registers are in the binary-coded decimal (BCD) format. The century bit (bit 7 of the Month register) is toggled when the Year register overflows from 99 to 00. The day-of-week register increments at midnight. Values that correspond to the day of week are user-defined but must be sequential (i.e., if 1 equals Sunday, then 2 equals Monday, and so on). Illogical time and date entries result in undefined operation. When reading or writing the time and date registers, secondary buffers are used to prevent errors when the internal registers update. When reading the time and date registers, the secondary buffers are synchronized to the internal registers on any I<sup>2</sup>C START and when the register pointer rolls over to zero. The time information is read from these secondary registers, while the clock continues to run. This eliminates the need to reread the registers in case the main registers update during a read.

#### I<sup>2</sup>C Interface

The I<sup>2</sup>C interface is guaranteed to operate when V<sub>CC</sub> is between 1.6V and 5.5V. The I<sup>2</sup>C interface is accessible whenever V<sub>CC</sub> is at a valid level. To prevent invalid device operation, the I<sup>2</sup>C interface should not be accessed when V<sub>CC</sub> is below +1.6V. The slave address is defined as the 7 most significant bits (MSbs) sent by the master after a START condition. The address is 0xD0 (left justified with LSb set to 0). The 8th bit is used to define a write or read operation. If a microcontroller connected to the MAX31329 resets during I<sup>2</sup>C communication, it is possible that the microcontroller and the MAX31329 could become unsynchronized. When the microcontroller resets, the MAX31329 I<sup>2</sup>C interface can be placed into a known state by holding SCL low for t<sub>TIMEOUT</sub>. Doing so limits the minimum frequency at which the I<sup>2</sup>C interface can be operated. If data is being written to the device when the interface timeout is exceeded, prior to the acknowledge, the incomplete byte of data is not written.



Figure 1. Data Transfer on I<sup>2</sup>C Serial Bus

#### **Burst Mode**

Burst read/write allows the controller to read/write multiple consecutive bytes from a device. It is initiated in the same manner as the byte read/write operation, but instead of terminating the read/write cycle after the first data byte is transferred, the controller can read/write to the whole register array. In burst write operation, after the receipt of each byte, the device responds with an acknowledge, and the address is internally incremented by one. When the address pointer reaches the end of the register address list, it goes back to the first register address. In burst read mode, the controller responds with an acknowledge, indicating it is waiting for additional data. The device continues to output data for each acknowledge received. The controller terminates the read operation by not responding with an acknowledge and issuing a STOP condition.

#### **Oscillator Circuit**

The MAX31329 uses an integrated 32.768kHz crystal. The oscillator circuit does not require any external resistors or capacitors to operate. After the oscillator is enabled, the startup time of the oscillator circuit is usually less than 1 second.

#### **Power Management**

The MAX31329 has a power-management function which monitors supply voltage on V<sub>CC</sub> and backup battery voltage on V<sub>BAT</sub>, and then determines which source to use as internal supply. There is a PFAIL interrupt flag status bit in the register map to indicate the power-fail condition. In power-management mode, the V<sub>BAT</sub> pin should be connected to the backup battery. If there is no backup battery, V<sub>BAT</sub> should be tied to ground. Power-management control bits Pwr\_mgmt[3:2] (register 0x18h) are used as follows: For the Power-Management Auto and Trickle Charger mode, specify a "power-fail voltage" with the register Pwr\_mgmt[3:2]. Pwr\_mgmt[3:2] = 01b sets the power-fail voltage to V<sub>TH1</sub>. Pwr\_mgmt[3:2] = 10b sets the power-fail voltage to V<sub>TH2</sub>. Pwr\_mgmt[3:2] = 11b sets the power-fail voltage to V<sub>TH3</sub>. See the values of V<sub>TH1</sub>, V<sub>TH2</sub>, and V<sub>TH3</sub> in the *Electrical Characteristics* table. Note that Pwr\_mgmt[3:2] = 00b, V<sub>TH1</sub> is not a valid power-fail voltage. Once the power-fail voltage is set, the MAX31329 switches backup battery voltage. Otherwise, V<sub>CC</sub> remains as the main supply V<sub>CC</sub> is lower than both the power-fail voltage and the backup battery voltage. Otherwise, V<sub>CC</sub> remains as the main supply. There is an PFAIL interrupt flag status bit in the status reg (00h) register that can be used as a power-fail flag. The PFAIL interrupt flag monitors the V<sub>CC</sub> supply and is set when V<sub>CC</sub> falls below the power-fail threshold voltage set through PFVT in the Pwr\_mgmt (18h) register or when power-fail threshold voltage is adjusted to cross above V<sub>CC</sub>.

| D_TRKCHG_EN | D_VBACK_SEL | D_MAN_SEL | MODE OF OPERATIO                                                                                      | N                |  |
|-------------|-------------|-----------|-------------------------------------------------------------------------------------------------------|------------------|--|
|             |             |           | Power-Management Auto and Trickle Charger On                                                          |                  |  |
|             |             |           | Supply Condition                                                                                      | Active Supply    |  |
|             | x           | 0         | V <sub>CC</sub> < V <sub>TH</sub> , V <sub>CC</sub> < V <sub>BAT</sub>                                | V <sub>BAT</sub> |  |
| 1           |             | 0         | V <sub>CC</sub> < V <sub>TH</sub> , V <sub>CC</sub> > V <sub>BAT</sub>                                | V <sub>CC</sub>  |  |
|             |             |           | V <sub>CC</sub> > V <sub>TH</sub> , V <sub>CC</sub> < V <sub>BAT</sub>                                | V <sub>CC</sub>  |  |
|             |             |           | V <sub>CC</sub> > V <sub>TH</sub> , V <sub>CC</sub> > V <sub>BAT</sub>                                | V <sub>CC</sub>  |  |
| 1           | 0           | 1         | Power-Management Manual and Trickle Charge Active Supply = $V_{CC}$                                   | er On            |  |
| 1           | 1           | 1         | Power-Management Manual and Trickle Charger On<br>Active Supply = $V_{BAT}$ for $V_{BAT} \ge V_{CC}$  |                  |  |
|             |             |           | Power-Management Auto and Trickle Charger                                                             | Off              |  |
|             |             |           | Supply Condition                                                                                      | Active Supply    |  |
| 2           |             | 0         | V <sub>CC</sub> < V <sub>TH</sub> , V <sub>CC</sub> < V <sub>BAT</sub>                                | V <sub>BAT</sub> |  |
| 0           | x           |           | V <sub>CC</sub> < V <sub>TH</sub> , V <sub>CC</sub> > V <sub>BAT</sub>                                | V <sub>CC</sub>  |  |
|             |             |           | V <sub>CC</sub> > V <sub>TH</sub> , V <sub>CC</sub> < V <sub>BAT</sub>                                | V <sub>CC</sub>  |  |
|             |             |           | V <sub>CC</sub> > V <sub>TH</sub> , V <sub>CC</sub> > V <sub>BAT</sub>                                | V <sub>CC</sub>  |  |
| 0           | 0           | 1         | Power-Management Manual and Trickle Charge Active Supply = $V_{CC}$                                   | er Off           |  |
| 0           | 1           | 1         | Power-Management Manual and Trickle Charger Off<br>Active Supply = $V_{BAT}$ for $V_{BAT} \ge V_{CC}$ |                  |  |

## Table 1. Power Management

## **Trickle Charger**

The trickle charger is for charging an external supercapacitor or a rechargeable battery. The maximum charging current can be calculated as follows:

## $I_{MAX} = (V_{CC} - V_D - V_{BAT})/R$

Where  $V_D$  is the diode voltage drop,  $V_{BAT}$  is the voltage of the battery being charged, and R is the resistance selected in the charging path. As the battery charges, the battery voltage increases and the voltage across the charging path decreases. Therefore, the charging current also decreases.

## Low-Current, Real-Time Clock with I<sup>2</sup>C, Power Management, and Integrated Crystal



Figure 2. Trickle Charger Register (19h)

#### **Interrupt Status and Outputs**

When an interrupt is asserted, a corresponding status bit in Int\_status\_reg (xxh) becomes "1", and an interrupt output transitions from high to low. The interrupt status bit and output can be cleared by reading Int\_status\_reg. See <u>Table 2</u> for interrupt configurations.

#### Table 2. Interrupt Modes

| ENCLKO | ENCLKIN | INTA <b>/CLKIN</b>                                                     | INTB <b>/CLKOUT</b>                     |
|--------|---------|------------------------------------------------------------------------|-----------------------------------------|
| 0      | 0       | INTA: Alarm1, Timer,<br>Power-Fail (PFAIL),<br>Digital Interrupt (DIN) | INTB: Alarm2                            |
| 0      | 1       | CLKIN                                                                  | INTB: Alarm1, Alarm2, Timer, PFAIL, DIN |
| 1      | 0       | INTA: Alarm1, Alarm2,<br>Timer, PFAIL, DIN                             | CLKOUT                                  |
| 1      | 1       | CLKIN                                                                  | CLKOUT                                  |

#### **Data Retention Mode**

The MAX31329 features a Data Retention mode wherein the device shuts down its internal functional blocks (including the oscillator) except the I<sup>2</sup>C interface. The device consumes 5nA (typ) in this mode. It retains all of the register contents, including the last valid date and time values. Exit Data Retention mode to resume counting. User data can be preserved in this mode as long as the active supply is present. To enter the Data Retention mode, write "1" to DATA\_RET in the RTC\_config1(03h) register. To exit the Data Retention mode, write "0" to DATA\_RET in the RTC\_config1(03h) register.

# Low-Current, Real-Time Clock with I<sup>2</sup>C, Power Management, and Integrated Crystal

#### Alarms

The MAX31329 contains two time-of-day/date alarms. Alarm1 can be set by writing to registers 0Dh–12h. Alarm2 can be set by writing to registers 13h–15h. See <u>Table 3</u> and <u>Table 4</u>. The alarms can be programmed by the A1IE and A2IE bits in Int\_en register to activate the INT output on an alarm match condition. Bit 7 of each of the time-of-day/date alarm registers and bit 6 of Alm1\_mon register are mask bits (<u>Table 2</u>). When all the mask bits for each alarm are logic 0, an alarm only occurs when the values in the timekeeping registers match the corresponding values stored in the time-of-day, date, month, and year alarm registers. The alarms can also be programmed to repeat every second, minute, hour, day, or date. <u>Table 3</u> and <u>Table 4</u> show the possible settings. Configurations not listed in the table result in illogical operation. The DY\_DT bit (bit 6 of the alarm day/date registers) controls whether the alarm value stored in bits 0–5 of that register represents the day of the week or the date of the month. If DY\_DT is written to logic 0, the alarm is the result of a match with date of the month. If DY\_DT is written to logic 0, the week.

## Table 3. Alarm1 Modes

| DY/DT | ALA  | RM1 RE | GISTER | MASK | BITS (B | IT 7) | ALARM RATE                                                         |
|-------|------|--------|--------|------|---------|-------|--------------------------------------------------------------------|
|       | A1M6 | A1M5   | A1M4   | A1M3 | A1M2    | A1M1  |                                                                    |
| Х     | 1    | 1      | 1      | 1    | 1       | 1     | Alarm once a second                                                |
| Х     | 1    | 1      | 1      | 1    | 1       | 0     | Alarm when seconds match                                           |
| Х     | 1    | 1      | 1      | 1    | 0       | 0     | Alarm when minutes and seconds match                               |
| Х     | 1    | 1      | 1      | 0    | 0       | 0     | Alarm when hours, minutes, and seconds match                       |
| 0     | 1    | 1      | 0      | 0    | 0       | 0     | Alarm when dates, hours, minutes, and seconds match                |
| 0     | 1    | 0      | 0      | 0    | 0       | 0     | Alarm when months, dates, hours, minutes, and seconds match        |
| 0     | 0    | 0      | 0      | 0    | 0       | 0     | Alarm when years, months, dates, hours, minutes, and seconds match |
| 1     | 1    | 1      | 0      | 0    | 0       | 0     | Alarm when days, hours, minutes, and seconds match                 |

## Table 4. Alarm2 Modes

| DY/DT | ALARM2 RE | GISTER MASK | K BITS (BIT 7) | ALARM RATE                                         |
|-------|-----------|-------------|----------------|----------------------------------------------------|
|       | A2M4      | A2M3        | A2M2           | Alarm once per minute (00 seconds of every minute) |
| Х     | 1         | 1           | 1              | Alarm when minutes match                           |
| Х     | 1         | 1           | 0              | Alarm when hours and minutes match                 |
| Х     | 1         | 0           | 0              | Alarm when dates, hours, and minutes match         |
| 0     | 0         | 0           | 0              | Alarm when days, hours, and minutes match          |
| 1     | 0         | 0           | 0              | Alarm when days, hours, and minutes match          |

#### **Countdown Timer**

The MAX31329 features a countdown timer with a pause function. The timer can be configured by writing into registers Timer\_config (05h) and Timer\_init (17h). The Timer\_init register should be loaded with the initial value from which the timer would start counting down. The Timer\_config register allows these configuration options:

- Select the frequency of the timer using the TFS[1:0] field.
- Start/stop the timer using the TE (Timer Enable) bit.
- Enable/disable the timer repeat function using the TRPT bit. This function reloads and restarts the timer with the same init value once it counts down to 0.
- Pause/resume the countdown at any time when the timer is enabled using the TPAUSE bit (explained below).

The timer can be programmed to assert the INT output (see <u>Table 2</u>) whenever it counts down to 0. This can be enabled/disabled using the TIE bit in register Int\_en register (01h).

The TPAUSE bit is only valid when TE = 1. This bit must be reset to 0 whenever TE is reset to 0.

<u>Table 5</u> highlights the steps to be used for various use cases involving TE and TPAUSE.

Typical use cases:

- Countdown timer without pause: Step 1 -> Step 2 -> Step 1, and so on
- Countdown timer with pause: Step 1 -> Step 2 -> Step 3a -> Step 3b -> Step 1, and so on

## Table 5. Countdown Timer Sequence

| SEQUENCE                 | TE | TPAUSE | ACTION                                                                                                                                                            |
|--------------------------|----|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1                   | 0  | 0      | Countdown timer is reset, and ready for next countdown operation. Timer_init can be programmed in this state.                                                     |
| Step 2                   | 1  | 0      | Countdown timer starts counting down from the value programmed in Timer_init.                                                                                     |
| Step 3a<br>(Optional)    | 1  | 1      | Countdown timer is paused and is ready to start counting down when TPAUSE is programmed back to '0'. Contents of the countdown timer are preserved in this state. |
| Step 3b<br>If 3a is true | 1  | 0      | Countdown timer is brought out of pause state and starts counting down from the paused value.                                                                     |
|                          | 0  | 1      | Not allowed                                                                                                                                                       |

## **Applications Information**

#### **Power Supply Decoupling**

To achieve the best results when using the device, decouple the  $V_{CC}$  and/or  $V_{BAT}$  power supplies with  $0.1\mu$ F and/or  $1.0\mu$ F capacitors. Use a high-quality, ceramic surface-mount capacitor if possible. Surface-mount components minimize lead inductance, which improves performance and ceramic capacitors tend to have adequate high-frequency response for decoupling applications. If communications during battery operation are not required, the  $V_{BAT}$  decoupling capacitor can be omitted.

#### **Using Open-Drain Outputs**

The INTA output is open-drain and, therefore, requires external pullup resistor to realize logic-high output levels. Pullup resistor values around  $10k\Omega$  are typical.

#### **Battery Leakage Current**

When the MAX31329 switches from  $V_{CC}$  to  $V_{BAT}$  supply, all of the I/O buffers internally operate on a  $V_{BAT}$  supply rail. If these pins are externally connected to an intermediate voltage level (between 0.7V and  $V_{BAT}$  - 0.7V), there will be a high leakage current (tens of microamperes) on the  $V_{BAT}$  supply. This scenario can occur when the system  $V_{CC}$  rail is discharging and the MAX31329 has switched to  $V_{BAT}$  supply, but the I/O pins are pulled up to the  $V_{CC}$  rail. Set EN\_IO = 0 in RTC\_Config1 register (03h) to ensure that all of the open-drain I/O pins (SDA, SCL, INTA/CLKIN) are disabled before switching the main supply to  $V_{BAT}$  to minimize the leakage current. These pins will be automatically enabled when the MAX31329 switches back to the  $V_{CC}$  supply.

#### **SDA and SCL Pullup Resistors**

SDA is an open-drain output and requires an external pullup resistor to realize a logic-high level. Because the device does not use clock cycle stretching, a master using either an open-drain output with a pullup resistor or CMOS output driver (push-pull) could be used for SCL.

#### Handling

The MAX31329 package contains an integrated resonator. Pick-and-place equipment can be used, but precautions should be taken to ensure that excessive shocks are avoided. Ultrasonic cleaning should be avoided to prevent damage to the resonator.

# **Typical Application Circuit**



# **Register Map**

## REGS

|         |                    |             |                    |                    | 1               |                  | 1            |                     |         |
|---------|--------------------|-------------|--------------------|--------------------|-----------------|------------------|--------------|---------------------|---------|
| ADDRESS | NAME               | MSB         |                    |                    |                 |                  |              |                     | LSB     |
| REGBLK  |                    |             |                    |                    |                 |                  |              |                     |         |
| 0x00    | STATUS[7:0]        | PSDECT      | OSF                | PFAIL              | LOS             | DIF TIF A2F A1F  |              |                     | A1F     |
| 0x01    | INT_EN[7:0]        | -           | DOSF               | PFAILE             | -               | DIE              | TIE          | A2IE                | A1IE    |
| 0x02    | RTC_RESET[7:0]     | -           | -                  | -                  | -               | -                | -            | -                   | SWRST   |
| 0x03    | RTC_CONFIG1[7:0]   | -           | _                  | _                  | -               | EN_IO            | DATA_RE<br>T | I2C_TIME<br>OUT     | ENOSC   |
| 0x04    | RTC_CONFIG2[7:0]   | ENCLKO      | CLKO_              | HZ[1:0]            | -               | DIP              | ENCLKIN      | CLKIN_              | HZ[1:0] |
| 0x05    | TIMER_CONFIG[7:0]  | -           | -                  | -                  | TE              | TPAUSE           | TRPT         | TFS                 | [1:0]   |
| 0x06    | SECONDS[7:0]       | -           |                    | SEC_10[2:0]        |                 | SECONDS[3:0]     |              |                     |         |
| 0x07    | MINUTES[7:0]       | -           |                    | MIN_10[2:0]        |                 | MINUTES[3:0]     |              |                     |         |
| 0x08    | HOURS[7:0]         | -           | F_24_12            | HR_20_A<br>M_PM    | HR_10           | HOUR[3:0]        |              |                     |         |
| 0x09    | DAY[7:0]           | -           | -                  | -                  | -               | - DAY[2:0]       |              |                     |         |
| 0x0A    | DATE[7:0]          | -           | -                  | DATE_              | 10[1:0]         | DATE[3:0]        |              |                     |         |
| 0x0B    | MONTH[7:0]         | CENTUR<br>Y | _                  | _                  | MONTH_1<br>0    |                  | MONT         | <sup>-</sup> H[3:0] |         |
| 0x0C    | YEAR[7:0]          |             | YEAR_              | _10[3:0]           |                 |                  | YEA          | R[3:0]              |         |
| 0x0D    | ALM1_SEC[7:0]      | A1M1        | A                  | 1_SEC_10[2:        | 0]              |                  | A1_SECO      | ONDS[3:0]           |         |
| 0x0E    | ALM1_MIN[7:0]      | A1M2        | A                  | .1_MIN_10[2:       | 0]              |                  | A1_MINU      | JTES[3:0]           |         |
| 0x0F    | ALM1_HRS[7:0]      | A1M3        | _                  | A1_HR_2<br>0_AM_PM | A1_HR_1<br>0    |                  | A1_HO        | UR[3:0]             |         |
| 0x10    | ALM1_DAY_DATE[7:0] | A1M4        | A1_DY_D<br>T_MATCH | A1_DATI            | E_10[1:0]       | A1_DAY_DATE[3:0] |              |                     |         |
| 0x11    | ALM1_MON[7:0]      | A1M5        | A1M6               | _                  | A1_MONT<br>H_10 | A1_MONTH[3:0]    |              |                     |         |
| 0x12    | ALM1_YEAR[7:0]     |             | A1_YEAI            | R_10[3:0]          |                 | A1_YEAR[3:0]     |              |                     |         |
| 0x13    | ALM2_MIN[7:0]      | A2M2        | A                  | 2_MIN_10[2:        | 0]              |                  | A2_MINU      | JTES[3:0]           |         |

# Low-Current, Real-Time Clock with I<sup>2</sup>C, Power Management, and Integrated Crystal

| ADDRESS | NAME                   | MSB              |                    |                    |              |           |                  | LSB           |  |  |                  |  |  |
|---------|------------------------|------------------|--------------------|--------------------|--------------|-----------|------------------|---------------|--|--|------------------|--|--|
| 0x14    | ALM2_HRS[7:0]          | A2M3             | _                  | A2_HR_2<br>0_AM_PM | A2_HR_1<br>0 | A2_HC     | A2_HOUR[3:0]     |               |  |  |                  |  |  |
| 0x15    | ALM2_DAY_DATE[7:0]     | A2M4             | A2_DY_D<br>T_MATCH | A2_DATI            | E_10[1:0]    | A2_DAY_   | A2_DAY_DATE[3:0] |               |  |  | A2_DAY_DATE[3:0] |  |  |
| 0x16    | TIMER_COUNT[7:0]       | TIMER_COUNT[7:0] |                    |                    |              |           |                  |               |  |  |                  |  |  |
| 0x17    | TIMER_INIT[7:0]        | TIMER_INIT[7:0]  |                    |                    |              |           |                  |               |  |  |                  |  |  |
| 0x18    | PWR_MGMT[7:0]          | _                | _                  | _                  | -            | PFVT[1:0] | D_VBACK<br>_SEL  | D_MAN_S<br>EL |  |  |                  |  |  |
| 0x19    | TRICKLE_REG[7:0]       | D_TRKCH<br>G_EN  | _                  | _                  | -            | D_TRIC    | D_TRICKLE[3:0]   |               |  |  |                  |  |  |
| RAM_REG |                        |                  |                    |                    |              |           |                  |               |  |  |                  |  |  |
| 0x22    | Ram_reg 0[7:0]         |                  |                    |                    | DAT          | A[7:0]    |                  |               |  |  |                  |  |  |
| 0x23    | Ram_reg 1[7:0]         |                  |                    |                    | DAT          | A[7:0]    |                  |               |  |  |                  |  |  |
| 0x24    | Ram_reg 2[7:0]         |                  | DATA[7:0]          |                    |              |           |                  |               |  |  |                  |  |  |
| 0x25    | Ram_reg 3[7:0]         |                  |                    |                    | DAT          | 4[7:0]    |                  |               |  |  |                  |  |  |
| 0x26    | Ram_reg 4[7:0]         |                  |                    |                    | DAT          | A[7:0]    |                  |               |  |  |                  |  |  |
| 0x27    | Ram_reg 5[7:0]         |                  |                    |                    | DAT          | A[7:0]    |                  |               |  |  |                  |  |  |
| 0x28    | Ram_reg 6[7:0]         |                  |                    |                    | DAT          | 4[7:0]    |                  |               |  |  |                  |  |  |
| 0x29    | Ram_reg 7[7:0]         |                  |                    |                    | DAT          | 4[7:0]    |                  |               |  |  |                  |  |  |
| 0x2A    | Ram_reg 8[7:0]         |                  |                    |                    | DAT          | 4[7:0]    |                  |               |  |  |                  |  |  |
| 0x2B    | Ram_reg 9[7:0]         |                  |                    |                    | DAT          | 4[7:0]    |                  |               |  |  |                  |  |  |
| 0x2C    | <u>Ram_reg 10[7:0]</u> |                  |                    |                    | DAT          | 4[7:0]    |                  |               |  |  |                  |  |  |
| 0x2D    | Ram_reg 11[7:0]        |                  |                    |                    | DAT          | 4[7:0]    |                  |               |  |  |                  |  |  |
| 0x2E    | Ram_reg 12[7:0]        |                  |                    |                    | DAT          | 4[7:0]    |                  |               |  |  |                  |  |  |
| 0x2F    | Ram_reg 13[7:0]        |                  |                    |                    | DAT          | 4[7:0]    |                  |               |  |  |                  |  |  |
| 0x30    | Ram_reg 14[7:0]        |                  |                    |                    | DAT          | 4[7:0]    |                  |               |  |  |                  |  |  |
| 0x31    | Ram_reg 15[7:0]        |                  |                    |                    | DAT          | 4[7:0]    |                  |               |  |  |                  |  |  |
| 0x32    | Ram_reg 16[7:0]        |                  |                    |                    | DAT          | 4[7:0]    |                  |               |  |  |                  |  |  |

# Low-Current, Real-Time Clock with I<sup>2</sup>C, Power Management, and Integrated Crystal

| ADDRESS | NAME            | MSB |           |  |     |        |  |  | LSB |
|---------|-----------------|-----|-----------|--|-----|--------|--|--|-----|
| 0x33    | Ram_reg 17[7:0] |     |           |  | DAT | A[7:0] |  |  |     |
| 0x34    | Ram_reg 18[7:0] |     |           |  | DAT | 4[7:0] |  |  |     |
| 0x35    | Ram_reg 19[7:0] |     |           |  | DAT | 4[7:0] |  |  |     |
| 0x36    | Ram_reg 20[7:0] |     |           |  | DAT | 4[7:0] |  |  |     |
| 0x37    | Ram_reg 21[7:0] |     |           |  | DAT | A[7:0] |  |  |     |
| 0x38    | Ram_reg 22[7:0] |     |           |  | DAT | A[7:0] |  |  |     |
| 0x39    | Ram_reg 23[7:0] |     |           |  | DAT | 4[7:0] |  |  |     |
| 0x3A    | Ram_reg 24[7:0] |     |           |  | DAT | A[7:0] |  |  |     |
| 0x3B    | Ram_reg 25[7:0] |     |           |  | DAT | A[7:0] |  |  |     |
| 0x3C    | Ram_reg 26[7:0] |     |           |  | DAT | 4[7:0] |  |  |     |
| 0x3D    | Ram_reg 27[7:0] |     |           |  | DAT | A[7:0] |  |  |     |
| 0x3E    | Ram_reg 28[7:0] |     |           |  | DAT | A[7:0] |  |  |     |
| 0x3F    | Ram_reg 29[7:0] |     |           |  | DAT | 4[7:0] |  |  |     |
| 0x40    | Ram_reg 30[7:0] |     |           |  | DAT | 4[7:0] |  |  |     |
| 0x41    | Ram_reg 31[7:0] |     |           |  | DAT | 4[7:0] |  |  |     |
| 0x42    | Ram_reg 32[7:0] |     |           |  | DAT | 4[7:0] |  |  |     |
| 0x43    | Ram_reg 33[7:0] |     |           |  | DAT | 4[7:0] |  |  |     |
| 0x44    | Ram_reg 34[7:0] |     |           |  | DAT | 4[7:0] |  |  |     |
| 0x45    | Ram_reg 35[7:0] |     |           |  | DAT | 4[7:0] |  |  |     |
| 0x46    | Ram_reg 36[7:0] |     |           |  | DAT | 4[7:0] |  |  |     |
| 0x47    | Ram_reg 37[7:0] |     |           |  | DAT | 4[7:0] |  |  |     |
| 0x48    | Ram_reg 38[7:0] |     |           |  | DAT | 4[7:0] |  |  |     |
| 0x49    | Ram_reg 39[7:0] |     |           |  | DAT | 4[7:0] |  |  |     |
| 0x4A    | Ram_reg 40[7:0] |     | DATA[7:0] |  |     |        |  |  |     |
| 0x4B    | Ram_reg 41[7:0] |     |           |  | DAT | 4[7:0] |  |  |     |
| 0x4C    | Ram_reg 42[7:0] |     |           |  | DAT | 4[7:0] |  |  |     |

# Low-Current, Real-Time Clock with I<sup>2</sup>C, Power Management, and Integrated Crystal

| ADDRESS | NAME            | MSB |           |  |     |        |  |  | LSB |  |
|---------|-----------------|-----|-----------|--|-----|--------|--|--|-----|--|
| 0x4D    | Ram_reg 43[7:0] |     |           |  | DAT | A[7:0] |  |  |     |  |
| 0x4E    | Ram_reg 44[7:0] |     |           |  | DAT | 4[7:0] |  |  |     |  |
| 0x4F    | Ram_reg 45[7:0] |     |           |  | DAT | A[7:0] |  |  |     |  |
| 0x50    | Ram_reg 46[7:0] |     | DATA[7:0] |  |     |        |  |  |     |  |
| 0x51    | Ram_reg 47[7:0] |     |           |  | DAT | A[7:0] |  |  |     |  |
| 0x52    | Ram_reg 48[7:0] |     |           |  | DAT | A[7:0] |  |  |     |  |
| 0x53    | Ram_reg 49[7:0] |     |           |  | DAT | A[7:0] |  |  |     |  |
| 0x54    | Ram_reg 50[7:0] |     |           |  | DAT | A[7:0] |  |  |     |  |
| 0x55    | Ram_reg 51[7:0] |     |           |  | DAT | A[7:0] |  |  |     |  |
| 0x56    | Ram_reg 52[7:0] |     |           |  | DAT | A[7:0] |  |  |     |  |
| 0x57    | Ram_reg 53[7:0] |     |           |  | DAT | A[7:0] |  |  |     |  |
| 0x58    | Ram_reg 54[7:0] |     |           |  | DAT | A[7:0] |  |  |     |  |
| 0x59    | Ram_reg 55[7:0] |     |           |  | DAT | A[7:0] |  |  |     |  |
| 0x5A    | Ram_reg 56[7:0] |     |           |  | DAT | A[7:0] |  |  |     |  |
| 0x5B    | Ram_reg 57[7:0] |     |           |  | DAT | A[7:0] |  |  |     |  |
| 0x5C    | Ram_reg 58[7:0] |     |           |  | DAT | A[7:0] |  |  |     |  |
| 0x5D    | Ram_reg 59[7:0] |     |           |  | DAT | A[7:0] |  |  |     |  |
| 0x5E    | Ram_reg 60[7:0] |     |           |  | DAT | A[7:0] |  |  |     |  |
| 0x5F    | Ram_reg 61[7:0] |     | DATA[7:0] |  |     |        |  |  |     |  |
| 0x60    | Ram_reg 62[7:0] |     | DATA[7:0] |  |     |        |  |  |     |  |
| 0x61    | Ram_reg 63[7:0] |     |           |  | DAT | 4[7:0] |  |  |     |  |

Register Details

## STATUS (0x0)

Interrupt Status Register

| BIT   | 7      | 6   | 5     | 4   | 3   | 2   | 1   | 0   |
|-------|--------|-----|-------|-----|-----|-----|-----|-----|
| Field | PSDECT | OSF | PFAIL | LOS | DIF | TIF | A2F | A1F |

# Low-Current, Real-Time Clock with I<sup>2</sup>C, Power Management, and Integrated Crystal

| Reset       | 0b0       | 0b1       | 0b0       | 0x0       | 0b0       | 0b0       | 0b0       | 0b0       |
|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Access Type | Read, Ext |

| BITFIELD | BITS | DESCRIPTION                                                           | DECODE                                                                                                                                                                                                                                                                                                                                                                                |
|----------|------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSDECT   | 7    | Main Supply Source Indication                                         | 0x0: Part is running on V <sub>CC</sub><br>0x1: Part is running on V <sub>BAT</sub>                                                                                                                                                                                                                                                                                                   |
| OSF      | 6    | Oscillator Stop Flag                                                  | 0x0: Set to 0 when oscillator is running or when DOSF = 1.<br>0x1: Set to 1 when oscillator has stopped. An interrupt will not be generated on interrupt pins.                                                                                                                                                                                                                        |
| PFAIL    | 5    | Power-Fail Flag                                                       | 0x0: Set to zero when there is no power-fail condition on $V_{CC}$ .<br>0x1: Set to 1 when there is a power-fail condition on $V_{CC}$ .<br>When this is set to '1', and PFAILE = 1, an interrupt will be generated on pin INTAb/INTBb. After an initial power-fail condition occurs, if the condition does not persist, this bit can only be cleared by reading the Status register. |
| LOS      | 4    | Loss of Signal. Valid only for external clock modes.<br>(ENCLKIN = 1) | 0x0: Oscillator clock frequency is within 0.8% of the<br>external clock frequency.<br>0x1: Oscillator clock frequency differs more than 0.8%<br>from the external clock frequency.                                                                                                                                                                                                    |
| DIF      | 3    | Digital (DIN) Interrupt Flag                                          | 0x0: Set to zero if DIN interrupt is not triggered.<br>0x1: Set to 1 when DIN interrupt is triggered.<br>When this is set to '1', and DIE = 1, an interrupt will be<br>generated on pin INTAb/INTBb.                                                                                                                                                                                  |
| TIF      | 2    | Timer Interrupt Flag                                                  | 0x0: Set to zero when countdown timer is not zero.<br>0x1: Set to 1 when countdown timer reaches to zero.<br>When this is set to '1', and TIE = 1, an interrupt will be<br>generated on pin INTAb/INTBb.                                                                                                                                                                              |
| A2F      | 1    | Alarm2 Interrupt Flag                                                 | 0x0: Set to 0 when RTC time does not match the alarm2<br>register.<br>0x1: Set to 1 when RTC time matches the alarm2 register.<br>When this bit is set, and A2IE = 1, an interrupt will be<br>generated on INTAb/INTBb.                                                                                                                                                               |
| A1F      | 0    | Alarm1 Interrupt Flag                                                 | 0x0: Set to zero when RTC time doesn't match to alarm1<br>register.<br>0x1: Set to 1 when RTC time matches the alarm1 register.<br>When this is set to 1, and A1IE=1, an interrupt will be<br>generated on pin INTAb/INTBb.                                                                                                                                                           |

## INT EN (0x1)

Interrupt Enable Register

| BIT         | 7 | 6           | 5           | 4 | 3           | 2           | 1           | 0           |
|-------------|---|-------------|-------------|---|-------------|-------------|-------------|-------------|
| Field       | - | DOSF        | PFAILE      | - | DIE         | TIE         | A2IE        | A1IE        |
| Reset       | _ | 0b0         | 0b0         | _ | 0b0         | 0b0         | 0b0         | 060         |
| Access Type | _ | Write, Read | Write, Read | _ | Write, Read | Write, Read | Write, Read | Write, Read |

| BITFIELD | BITS | DESCRIPTION             | DECODE                                                                                                                               |
|----------|------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| DOSF     | 6    | Disable Oscillator Flag | 0x0: Allow the OSF to indicate the oscillator status.<br>0x1: Disable the oscillator flag, irrespective of the<br>oscillator status. |

# Low-Current, Real-Time Clock with I<sup>2</sup>C, Power Management, and Integrated Crystal

| BITFIELD | BITS | DESCRIPTION                    | DECODE                                                                                                                                |
|----------|------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| PFAILE   | 5    | Power-Fail Interrupt Enable    | 0x0: When set to 0, power-fail interrupt function is<br>disabled.<br>0x1: When set to 1, power-fail interrupt function is<br>enabled. |
| DIE      | 3    | Digital (DIN) Interrupt Enable | 0x0: Disable DIN interrupt function<br>0x1: Enable DIN interrupt function                                                             |
| TIE      | 2    | Timer Interrupt Enable         | 0x0: Disable timer interrupt function<br>0x1: Enable timer interrupt function                                                         |
| A2IE     | 1    | Alarm2 Interrupt Enable        | 0x0: Disable alarm2 interrupt function<br>0x1: Enable alarm2 interrupt function                                                       |
| A1IE     | 0    | Alarm1 Interrupt Enable        | 0x0: Disable alarm1 interrupt function<br>0x1: Enable alarm1 interrupt function                                                       |

## RTC\_RESET (0x2)

RTC Software Reset Register

| BIT         | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0                   |
|-------------|---|---|---|---|---|---|---|---------------------|
| Field       | - | - | - | _ | _ | _ | _ | SWRST               |
| Reset       | _ | _ | _ | _ | _ | - | _ | 0b0                 |
| Access Type | _ | _ | _ | _ | _ | _ | _ | Write, Read,<br>Ext |

| BITFIELD | BITS | DESCRIPTION                      | DECODE                                                                                                                                                                                                                                  |
|----------|------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SWRST    | 0    | state, this bit must be cleared. | 0x0: When set to 0, the device is in normal working mode.<br>0x1: When set to 1, resets the digital block and the I <sup>2</sup> C-<br>programmable registers, except for RAM registers and<br>RTC_reset.SWRST. Oscillator is disabled. |

## RTC\_CONFIG1 (0x3)

**RTC** Configuration Register

| BIT         | 7 | 6 | 5 | 4 | 3           | 2           | 1               | 0           |
|-------------|---|---|---|---|-------------|-------------|-----------------|-------------|
| Field       | - | _ | _ | - | EN_IO       | DATA_RET    | I2C_TIMEOU<br>T | ENOSC       |
| Reset       | - | _ | _ | - | 0b1         | 0b0         | 0b1             | 0b1         |
| Access Type | - | - | - | _ | Write, Read | Write, Read | Write, Read     | Write, Read |

| BITFIELD | BITS | BITS DESCRIPTION DECODE                                                                                               |                                                                                                                                        |
|----------|------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| EN_IO    | 3    | Disables All Open-Drain I/Os (SDA, SCL, INTAb/CLKIN) when running on $V_{BAT}$ . No effect when running on $V_{CC}$ . | 0x0: Disables all open-drain I/Os when running on $V_{\text{BAT}}.$ 0x1: Enables all open-drain I/Os when running on $V_{\text{BAT}}.$ |

# Low-Current, Real-Time Clock with I<sup>2</sup>C, Power Management, and Integrated Crystal

| BITFIELD    | BITS | DESCRIPTION                        | DECODE                                                                          |  |  |
|-------------|------|------------------------------------|---------------------------------------------------------------------------------|--|--|
| DATA_RET    | 2    | Data Retention Mode Enable/Disable | 0x0: Normal operation mode<br>0x1: Data Retention mode                          |  |  |
| I2C_TIMEOUT | 1    | I <sup>2</sup> C Timeout Enable    | 0x0: Disables I <sup>2</sup> C timeout<br>0x1: Enables I <sup>2</sup> C timeout |  |  |
| ENOSC       | 0    | Active-High Enable for Oscillator  | 0x0: Disable oscillator<br>0x1: Enable oscillator                               |  |  |

#### RTC\_CONFIG2 (0x4)

RTC Configuration Register

| BIT         | 7           | 6            | 5    | 4 | 3           | 2           | 1             | 0    |
|-------------|-------------|--------------|------|---|-------------|-------------|---------------|------|
| Field       | ENCLKO      | CLKO_HZ[1:0] |      | - | DIP         | ENCLKIN     | CLKIN_HZ[1:0] |      |
| Reset       | 0b0         | 0b00         |      | - | 0x0         | 0x0         | 0b00          |      |
| Access Type | Write, Read | Write,       | Read | _ | Write, Read | Write, Read | Write,        | Read |

| BITFIELD | BITS | DESCRIPTION                               | DECODE                                                                                                        |  |  |
|----------|------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|
| ENCLKO   | 7    | CLKO Enable                               | 0x0: Sets INTBb/CLKOUT pin as INTBb (interrupt).<br>0x1: Sets INTBb/CLKOUT pin as CLKO (clock output).        |  |  |
| CLKO_HZ  | 6:5  | Set Output Clock Frequency on INTB/CLKOUT | 0x0: 1Hz<br>0x1: 4.096kHz<br>0x2: 8.192kHz<br>0x3: 32.768kHz                                                  |  |  |
| DIP      | 3    | Digital (DIN) Interrupt Polarity          | 0x0: Interrupt triggers on falling edge of DIN input.<br>0x1: Interrupt triggers on rising edge of DIN input. |  |  |
| ENCLKIN  | 2    | CLKIN Enable                              | 0x0: Sets INTAb/CLKIN pin as INTAb (interrupt).<br>0x1: Sets INTAb/CLKIN pin as CLKIN (clock input).          |  |  |
| CLKIN_HZ | 1:0  | Set Input Clock Frequency on INTA/CLKIN   | 0x0: 1Hz<br>0x1: 50Hz<br>0x2: 60Hz<br>0x3: 32.768kHz                                                          |  |  |

## TIMER\_CONFIG (0x5)

Countdown Timer Configuration Register

| BIT         | 7 | 6 | 5 | 4           | 3           | 2           | 1           | 0 |
|-------------|---|---|---|-------------|-------------|-------------|-------------|---|
| Field       | - | - | - | TE          | TPAUSE      | TRPT        | TFS[1:0]    |   |
| Reset       | _ | - | - | 0b0         | 0b0         | 0b1         | 0600        |   |
| Access Type | _ | _ | _ | Write, Read | Write, Read | Write, Read | Write, Read |   |

| BITFIELD | BITS              | DESCRIPTION | DECODE                                                                                                     |
|----------|-------------------|-------------|------------------------------------------------------------------------------------------------------------|
| TE       | TE 4 Timer Enable |             | 0x0: Timer is reset when set to 0. New timer countdown value (Timer_Init) can be programmed in this state. |
|          | -                 |             | Note: In this state, ensure TPAUSE is also programmed to                                                   |

# Low-Current, Real-Time Clock with I<sup>2</sup>C, Power Management, and Integrated Crystal

| BITFIELD | BITS | DESCRIPTION                                                                                                                                                                                                                 | DECODE                                                                                                                                                                                                                                      |
|----------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |      | Also see the TPAUSE field for additional information.                                                                                                                                                                       | 0 if TPAUSE was set to 1 earlier.<br>0x1: Timer starts counting down from the value<br>programmed in Timer_Init.                                                                                                                            |
| TPAUSE   | 3    | Timer Pause. This field is valid only when TE = 1.<br>When TE will be programmed to 0, this field must<br>also be reset to 0.<br>Details about Timer Pause are explained in detail in<br>another section of the data sheet. | 0x0: Timer continues to count down from the paused<br>count value as per programming.<br>0x1: Timer is paused, however, the count value is<br>retained. When this bit is reset back to 0, the countdown<br>continues from the paused value. |
| TRPT     | 2    | Timer Repeat Mode. Controls the timer interrupt function.                                                                                                                                                                   | 0x0: Countdown timer will halt once it reaches 0.<br>0x1: Countdown timer reloads the value from the timer<br>initial register upon reaching 0 and continues counting.                                                                      |
| TFS      | 1:0  | Timer Frequency Selection                                                                                                                                                                                                   | 0x0: 1024Hz<br>0x1: 256Hz<br>0x2: 64Hz<br>0x3: 16Hz                                                                                                                                                                                         |

## SECONDS (0x6)

Seconds Configuration Register

| BIT         | 7 | 6           | 5                 | 4 | 3            | 2         | 1          | 0 |  |
|-------------|---|-------------|-------------------|---|--------------|-----------|------------|---|--|
| Field       | _ | SEC_10[2:0] |                   |   | SECONDS[3:0] |           |            |   |  |
| Reset       | _ |             | 0b000             |   |              | 0)        | <b>(</b> 0 |   |  |
| Access Type | _ | Ň           | Write, Read, Dual |   |              | Write, Re | ead, Dual  |   |  |

| BITFIELD | BITS | DESCRIPTION                    |  |  |
|----------|------|--------------------------------|--|--|
| SEC_10   | 6:4  | RTC Seconds in Multiples of 10 |  |  |
| SECONDS  | 3:0  | RTC Seconds Value              |  |  |

#### MINUTES (0x7)

Minutes Configuration Register

| BIT         | 7 | 6           | 5                 | 4 | 3            | 2         | 1         | 0 |  |
|-------------|---|-------------|-------------------|---|--------------|-----------|-----------|---|--|
| Field       | - | MIN_10[2:0] |                   |   | MINUTES[3:0] |           |           |   |  |
| Reset       | - |             | 06000             |   |              | 0x0       |           |   |  |
| Access Type | _ | ١           | Write, Read, Dual |   |              | Write, Re | ead, Dual |   |  |

| BITFIELD | BITS | DESCRIPTION                    |
|----------|------|--------------------------------|
| MIN_10   | 6:4  | RTC Minutes in Multiples of 10 |

| BITFIELD | BITS | DESCRIPTION       |
|----------|------|-------------------|
| MINUTES  | 3:0  | RTC Minutes Value |

#### HOURS (0x8)

Hours Configuration Register

| BIT         | 7 | 6           | 5                    | 4                    | 3 | 2         | 1         | 0 |
|-------------|---|-------------|----------------------|----------------------|---|-----------|-----------|---|
| Field       | - | F_24_12     | HR_20_AM_<br>PM      | HR_10                |   | HOU       | R[3:0]    |   |
| Reset       | _ | 060         | 0b0                  | 0b0                  |   | 0:        | кO        |   |
| Access Type | _ | Write, Read | Write, Read,<br>Dual | Write, Read,<br>Dual |   | Write, Re | ead, Dual |   |

| BITFIELD        | BITS | DESCRIPTION                                                                                                               | DECODE                                                                       |
|-----------------|------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| F_24_12         | 6    | Sets RTC in 12-Hour or 24-Hour Format                                                                                     | 0x0: 24-hour format<br>0x1: 12-hour format                                   |
| HR_20_AM_P<br>M | 5    | In 12-hour format, this works as the AM/PM indicator.<br>In 24-hour format, it is the RTC hours in multiples of 20 (BCD). | 0x0: Indicates AM in 12-hour format.<br>0x1: Indicates PM in 12-hour format. |
| HR_10           | 4    | RTC Hours in Multiples of 10 (BCD)                                                                                        |                                                                              |
| HOUR            | 3:0  | RTC Hours Value (BCD)                                                                                                     |                                                                              |

#### DAY (0x9)

Day Configuration Register

| BIT         | 7 | 6 | 5 | 4 | 3 | 2                 | 1        | 0 |
|-------------|---|---|---|---|---|-------------------|----------|---|
| Field       | _ | _ | - | _ | - |                   | DAY[2:0] |   |
| Reset       | _ | _ | - | - | - | 0b001             |          |   |
| Access Type | _ | _ | _ | _ | _ | Write, Read, Dual |          |   |

| BITFIELD | BITS | DESCRIPTION |
|----------|------|-------------|
| DAY      | 2:0  | RTC Days    |

## DATE (0xA)

Date Configuration Register

# Low-Current, Real-Time Clock with I<sup>2</sup>C, Power Management, and Integrated Crystal

| BIT         | 7 | 6 | 5         | 4         | 3                 | 2 | 1 | 0 |  |
|-------------|---|---|-----------|-----------|-------------------|---|---|---|--|
| Field       | _ | - | DATE_     | _10[1:0]  | DATE[3:0]         |   |   |   |  |
| Reset       | _ | - | 0b        | 00        | 0x1               |   |   |   |  |
| Access Type | - | - | Write, Re | ead, Dual | Write, Read, Dual |   |   |   |  |

| BITFIELD | BITS | DESCRIPTION                       |
|----------|------|-----------------------------------|
| DATE_10  | 5:4  | RTC Date in Multiples of 10 (BCD) |
| DATE     | 3:0  | RTC Date (BCD)                    |

#### MONTH (0xB)

#### Month Configuration Register

| BIT         | 7                    | 6 | 5 | 4                    | 3   | 2         | 1         | 0 |
|-------------|----------------------|---|---|----------------------|-----|-----------|-----------|---|
| Field       | CENTURY              | - | - | MONTH_10             |     | MONT      | H[3:0]    |   |
| Reset       | 0b0                  | _ | _ | 0b0                  | 0x1 |           |           |   |
| Access Type | Write, Read,<br>Dual | _ | _ | Write, Read,<br>Dual |     | Write, Re | ead, Dual |   |

| BITFIELD | BITS | DESCRIPTION                        | DECODE                                                         |
|----------|------|------------------------------------|----------------------------------------------------------------|
| CENTURY  | 7    | Century Bit                        | 0x0: Year is in 21st century.<br>0x1: Year is in 22nd century. |
| MONTH_10 | 4    | RTC Month in Multiples of 10 (BCD) |                                                                |
| MONTH    | 3:0  | RTC Months (BCD)                   |                                                                |

#### YEAR (0xC)

Year Configuration Register

| BIT         | 7 | 6         | 5         | 4 | 3                 | 2 | 1 | 0 |  |
|-------------|---|-----------|-----------|---|-------------------|---|---|---|--|
| Field       |   | YEAR_     | _10[3:0]  |   | YEAR[3:0]         |   |   |   |  |
| Reset       |   | 0:        | x0        |   | 0x0               |   |   |   |  |
| Access Type |   | Write, Re | ead, Dual |   | Write, Read, Dual |   |   |   |  |

| BITFIELD | BITS | DESCRIPTION                    |
|----------|------|--------------------------------|
| YEAR_10  | 7:4  | RTC Year Multiples of 10 (BCD) |

| BITFIELD | BITS | DESCRIPTION     |
|----------|------|-----------------|
| YEAR     | 3:0  | RTC Years (BCD) |

#### ALM1\_SEC (0xD)

Alarm1 Seconds Configuration Register

| DY_DT | A1M6 | A1M5 | A1M4 | A1M3 | A1M2 | A1M1 | ALARM RATE                              |
|-------|------|------|------|------|------|------|-----------------------------------------|
| x     | 1    | 1    | 1    | 1    | 1    | 1    | Once per sec                            |
| x     | 1    | 1    | 1    | 1    | 1    | 0    | Sec match                               |
| x     | 1    | 1    | 1    | 1    | 0    | 0    | Min and sec<br>match                    |
| x     | 1    | 1    | 1    | 0    | 0    | 0    | Hour, min, and sec match                |
| 0     | 1    | 1    | 0    | 0    | 0    | 0    | Date and time match                     |
| 0     | 1    | 0    | 0    | 0    | 0    | 0    | Month, date,<br>and time match          |
| 0     | 0    | 0    | 0    | 0    | 0    | 0    | Year, month,<br>date, and time<br>match |
| 1     | 1    | 1    | 0    | 0    | 0    | 0    | Day and time<br>match                   |

Alarm 1 can be set by writing to registers 0Dh–12h. See the Register Map. The alarm can be programmed by the A1IE bit in Int\_en reg (01h) register to activate the INT output on an alarm match condition. Bit 7 of each of the time-of-day/date alarm registers, and Bit 7 and 6 of the month alarm register are mask bits. When all of the mask bits of each alarm are logic 0, an alarm only occurs when the values in the timekeeping registers match the corresponding values stored in the time-ofday/date alarm registers. The alarm can also be programmed to repeat every second, minute, hour, day, date, month, or year. The table above shows the possible settings. Configurations not listed in the table result in illogical operation. The DY\_DT bit (bit 6 of the alarm day/date registers) controls whether the alarm value stored in bits 0–5 of that register reflects the day of the week or the date of the month. If DY\_DT is written to logic 0, the alarm is the result of a match with date of the month. If DY\_DT is written to logic 1, the alarm is the result of a match with the day of the week.

| BIT         | 7           | 6 | 5              | 4 | 3               | 2      | 1    | 0 |  |
|-------------|-------------|---|----------------|---|-----------------|--------|------|---|--|
| Field       | A1M1        |   | A1_SEC_10[2:0] | ] | A1_SECONDS[3:0] |        |      |   |  |
| Reset       | 060         |   | 0b000          |   |                 | 0)     | k0   |   |  |
| Access Type | Write, Read |   | Write, Read    |   |                 | Write, | Read |   |  |

| BITFIELD   | BITS | DESCRIPTION                       |
|------------|------|-----------------------------------|
| A1M1       | 7    | Alarm1 Mask Bit for Seconds       |
| A1_SEC_10  | 6:4  | Alarm1 Seconds in Multiples of 10 |
| A1_SECONDS | 3:0  | Alarm1 Seconds                    |

#### ALM1\_MIN (0xE)

Alarm1 Minutes Configuration Register

| BIT         | 7           | 6 | 5              | 4 | 3 | 2               | 1    | 0 |  |  |
|-------------|-------------|---|----------------|---|---|-----------------|------|---|--|--|
| Field       | A1M2        |   | A1_MIN_10[2:0] |   |   | A1_MINUTES[3:0] |      |   |  |  |
| Reset       | 0b0         |   | 0b000          |   |   | 0;              | k0   |   |  |  |
| Access Type | Write, Read |   | Write, Read    |   |   | Write,          | Read |   |  |  |

| BITFIELD   | BITS | DESCRIPTION                       |
|------------|------|-----------------------------------|
| A1M2       | 7    | Alarm1 Mask Bit for Minutes       |
| A1_MIN_10  | 6:4  | Alarm1 Minutes in Multiples of 10 |
| A1_MINUTES | 3:0  | Alarm1 Minutes                    |

#### ALM1\_HRS (0xF)

Alarm1 Hours Configuration Register

| BIT         | 7           | 6 | 5                  | 4           | 3            | 2 | 1 | 0 |  |
|-------------|-------------|---|--------------------|-------------|--------------|---|---|---|--|
| Field       | A1M3        | _ | A1_HR_20_A<br>M_PM | A1_HR_10    | A1_HOUR[3:0] |   |   |   |  |
| Reset       | 060         | - | 0b0                | 0b0         | 0x0          |   |   |   |  |
| Access Type | Write, Read | _ | Write, Read        | Write, Read | Write, Read  |   |   |   |  |

| BITFIELD           | BITS | DESCRIPTION                                                                                                                        | DECODE                                                                       |
|--------------------|------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| A1M3               | 7    | Alarm1 Mask Bit for Hours                                                                                                          |                                                                              |
| A1_HR_20_AM<br>_PM | 5    | In 12-hour format, this works as the AM/PM<br>indicator.<br>In 24-hour format, it is the Alarm1 hours in multiples<br>of 20 (BCD). | 0x0: Indicates AM in 12-hour format.<br>0x1: Indicates PM in 12-hour format. |

| BITFIELD | BITS | DESCRIPTION                     | DECODE |
|----------|------|---------------------------------|--------|
| A1_HR_10 | 4    | Alarm1 Hours in Multiples of 10 |        |
| A1_HOUR  | 3:0  | Alarm1 Hours                    |        |

#### ALM1\_DAY\_DATE (0x10)

Alarm1 Day/Date Configuration Register

| BIT         | 7           | 6                  | 5               | 4    | 3                | 2   | 1 | 0 |  |
|-------------|-------------|--------------------|-----------------|------|------------------|-----|---|---|--|
| Field       | A1M4        | A1_DY_DT_<br>MATCH | A1_DATE_10[1:0] |      | A1_DAY_DATE[3:0] |     |   |   |  |
| Reset       | 0b0         | 0b0                | Ob              | 0b00 |                  | 0x0 |   |   |  |
| Access Type | Write, Read | Write, Read        | Write,          | Read | Write, Read      |     |   |   |  |

| BITFIELD           | BITS | DESCRIPTION                    | DECODE                                                    |
|--------------------|------|--------------------------------|-----------------------------------------------------------|
| A1M4               | 7    | Alarm1 Mask Bit for Day/Date   |                                                           |
| A1_DY_DT_M<br>ATCH | 6    |                                | 0x0: Alarm when dates match<br>0x1: Alarm when days match |
| A1_DATE_10         | 5:4  | Alarm1 Date in Multiples of 10 |                                                           |
| A1_DAY_DAT<br>E    | 3:0  | Alarm1 Day/Date                |                                                           |

#### ALM1\_MON (0x11)

Alarm1 Month Configuration Register

| BIT         | 7           | 6           | 5 | 4               | 3             | 2      | 1    | 0 |
|-------------|-------------|-------------|---|-----------------|---------------|--------|------|---|
| Field       | A1M5        | A1M6        | _ | A1_MONTH_<br>10 | A1_MONTH[3:0] |        |      |   |
| Reset       | 060         | 060         | - | 0b0             | 0x0           |        |      |   |
| Access Type | Write, Read | Write, Read | - | Write, Read     |               | Write, | Read |   |

| BITFIELD    | BITS | DESCRIPTION                      |
|-------------|------|----------------------------------|
| A1M5        | 7    | Alarm1 Mask Bit for Month        |
| A1M6        | 6    | Alarm1 Mask Bit for Year         |
| A1_MONTH_10 | 4    | Alarm1 Months in Multiples of 10 |

| BITFIELD | BITS | DESCRIPTION   |
|----------|------|---------------|
| A1_MONTH | 3:0  | Alarm1 Months |

#### ALM1\_YEAR (0x12)

Alarm1 Year Configuration Register

| BIT         | 7 | 6      | 5          | 4 | 3            | 2      | 1    | 0 |  |
|-------------|---|--------|------------|---|--------------|--------|------|---|--|
| Field       |   | A1_YEA | R_10[3:0]  |   | A1_YEAR[3:0] |        |      |   |  |
| Reset       |   | 0)     | <b>(</b> 0 |   | 0x0          |        |      |   |  |
| Access Type |   | Write, | Read       |   |              | Write, | Read |   |  |

| BITFIELD   | BITS | DESCRIPTION                    |
|------------|------|--------------------------------|
| A1_YEAR_10 | 7:4  | Alarm1 Year in Multiples of 10 |
| A1_YEAR    | 3:0  | Alarm1 Years                   |

#### ALM2 MIN (0x13)

Alarm 2 can be set by writing to registers 13h–15h. See the Register Map. The alarm can be programmed by the A2IE bit in Int\_en reg (01h) register to activate the INT output on an alarm match condition. Bit 7 of each of the time-of-day/date alarm registers are mask bits. When all of the mask bits of each alarm are logic 0, an alarm only occurs when the values in the timekeeping registers match the corresponding values stored in the time-of-day/date alarm registers. The alarm can also be programmed to repeat every minute, hour, day, or date. The table below shows the possible settings. Configurations not listed in the table result in illogical operation. The DY\_DT bit (bit 6 of the alarm day/date registers) controls whether the alarm value stored in bits 0–5 of that register reflects the day of the week or the date of the month. If DY\_DT is written to logic 0, the alarm is the result of a match with date of the month. If DY\_DT is written to logic 1, the alarm is the result of a match with day of the week.

| DY_DT |   | A2M | 14 |   | A2M3 |   | A2M2 |                       | ALARM RATE           |                       |   |
|-------|---|-----|----|---|------|---|------|-----------------------|----------------------|-----------------------|---|
| x     |   | 1   |    |   | 1    |   | 1    | 1                     |                      | e                     |   |
| x     |   | 1   |    | 1 |      | 0 |      | Minute match          |                      |                       |   |
| x     |   | 1   |    | 0 |      |   |      | 0                     |                      | Hour and minute match |   |
| 0     |   | 0   |    | 0 |      | 0 |      | Date, hour, and match | minute               |                       |   |
| 1     |   | 0   |    |   | 0    |   | 0    |                       | Day, hour, and match | minute                |   |
| BIT   | 7 |     | 6  |   | 5    | 4 |      | 3                     | 2                    | 1                     | 0 |

# Low-Current, Real-Time Clock with I<sup>2</sup>C, Power Management, and Integrated Crystal

| Field       | A2M2        | A2_MIN_10[2:0] | A2_MINUTES[3:0] |  |  |
|-------------|-------------|----------------|-----------------|--|--|
| Reset       | 0b0         | 0b000          | 0x0             |  |  |
| Access Type | Write, Read | Write, Read    | Write, Read     |  |  |

| BITFIELD   | BITS | DESCRIPTION                       |       |           |            |                              |  |  |  |
|------------|------|-----------------------------------|-------|-----------|------------|------------------------------|--|--|--|
|            |      | Alarm2 Mask Bit for Minutes       |       |           |            |                              |  |  |  |
|            |      |                                   | ALARM | 2 MASK BI | TS (BIT 7) |                              |  |  |  |
|            |      | DY/DT                             | A2M4  | A2M3      | A2M2       | ALARM RATE                   |  |  |  |
|            | 7    | х                                 | 1     | 1         | 1          | Once per minute              |  |  |  |
| A2M2       |      | х                                 | 1     | 1         | 0          | Minutes match.               |  |  |  |
|            |      | х                                 | 1     | 0         | 0          | Hour and minute match        |  |  |  |
|            |      | 0                                 | 0     | 0         | 0          | Date, hour, and minute match |  |  |  |
|            |      | 1                                 | 0     | 0         | 0          | Day, hour, and minute match  |  |  |  |
| A2_MIN_10  | 6:4  | Alarm2 Minutes in Multiples of 10 |       |           |            |                              |  |  |  |
| A2_MINUTES | 3:0  | Alarm2 Minutes                    |       |           |            |                              |  |  |  |

#### ALM2 HRS (0x14)

Alarm2 Hours Configuration Register

| BIT         | 7           | 6 | 5                  | 4           | 3            | 2 | 1 | 0 |
|-------------|-------------|---|--------------------|-------------|--------------|---|---|---|
| Field       | A2M3        | - | A2_HR_20_A<br>M_PM | A2_HR_10    | A2_HOUR[3:0] |   |   |   |
| Reset       | 0b0         | - | 0b0                | 0b0         | 0x0          |   |   |   |
| Access Type | Write, Read | _ | Write, Read        | Write, Read | Write, Read  |   |   |   |

| BITFIELD           | BITS | DESCRIPTION                                                                                                                        | DECODE                                                                       |
|--------------------|------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| A2M3               | 7    | Alarm2 Mask Bit for Hours                                                                                                          |                                                                              |
| A2_HR_20_AM<br>_PM | 5    | In 12-hour format, this works as the AM/PM<br>indicator.<br>In 24-hour format, it is the Alarm2 hours in multiples<br>of 20 (BCD). | 0x0: Indicates AM in 12-hour format.<br>0x1: Indicates PM in 12-hour format. |
| A2_HR_10           | 4    | Alarm2 Hours in Multiples of 10                                                                                                    |                                                                              |

| BITFIELD | BITS | DESCRIPTION  | DECODE |
|----------|------|--------------|--------|
| A2_HOUR  | 3:0  | Alarm2 Hours |        |

#### ALM2\_DAY\_DATE (0x15)

Alarm2 Day/Date Configuration Register

| BIT         | 7           | 6                  | 5       | 4         | 3                | 2      | 1    | 0 |  |
|-------------|-------------|--------------------|---------|-----------|------------------|--------|------|---|--|
| Field       | A2M4        | A2_DY_DT_<br>MATCH | A2_DATI | E_10[1:0] | A2_DAY_DATE[3:0] |        |      |   |  |
| Reset       | 0b0         | 0b0                | Ob      | 00        |                  | 0:     | k0   |   |  |
| Access Type | Write, Read | Write, Read        | Write,  | Read      |                  | Write, | Read |   |  |

| BITFIELD           | BITS | DESCRIPTION                                  | DECODE                                                    |
|--------------------|------|----------------------------------------------|-----------------------------------------------------------|
| A2M4               | 7    | Alarm2 Mask Bit for Day/Date                 |                                                           |
| A2_DY_DT_M<br>ATCH | 6    | Selects Alarm when Days Match or Dates Match | 0x0: Alarm when dates match<br>0x1: Alarm when days match |
| A2_DATE_10         | 5:4  | Alarm2 Date in Multiples of 10               |                                                           |
| A2_DAY_DAT<br>E    | 3:0  | Alarm2 Day/Date                              |                                                           |

#### TIMER\_COUNT (0x16)

Countdown Timer Value Register

| BIT         | 7 | 6                | 5 | 4    | 3    | 2 | 1 | 0 |  |
|-------------|---|------------------|---|------|------|---|---|---|--|
| Field       |   | TIMER_COUNT[7:0] |   |      |      |   |   |   |  |
| Reset       |   | 0x00             |   |      |      |   |   |   |  |
| Access Type |   |                  |   | Read | Only |   |   |   |  |

| BITFIELD    | BITS | DESCRIPTION                                                                                        |
|-------------|------|----------------------------------------------------------------------------------------------------|
| TIMER_COUNT | 7:0  | Countdown Timer Current Count Value. The current timer value can be read by reading this register. |

#### TIMER\_INIT (0x17)

Countdown Timer Initialization Register

| BIT         | 7               | 6           | 5 | 4 | 3 | 2 | 1 | 0 |  |
|-------------|-----------------|-------------|---|---|---|---|---|---|--|
| Field       | TIMER_INIT[7:0] |             |   |   |   |   |   |   |  |
| Reset       |                 | 0x00        |   |   |   |   |   |   |  |
| Access Type |                 | Write, Read |   |   |   |   |   |   |  |

| BITFIELD   | BITS | DESCRIPTION                                                                                                             |
|------------|------|-------------------------------------------------------------------------------------------------------------------------|
| TIMER_INIT | 7:0  | Countdown Timer Initial Value. The timer is loaded with the contents of this register when it reaches 0 in repeat mode. |

#### PWR\_MGMT (0x18)

Power-Management Configuration Register

| BIT         | 7 | 6 | 5 | 4 | 3           | 2      | 1               | 0           |
|-------------|---|---|---|---|-------------|--------|-----------------|-------------|
| Field       | - | - | - | - | PFV         | [[1:0] | D_VBACK_S<br>EL | D_MAN_SEL   |
| Reset       | - | - | _ | - | 0b11        |        | 0b0             | 0b0         |
| Access Type | _ | _ | _ | _ | Write, Read |        | Write, Read     | Write, Read |

| BITFIELD        | BITS | DESCRIPTION                                                                                                                                                                                                                                                                         | DECODE                                                                                                                                                                               |  |
|-----------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| PFVT            | 3:2  | Power-Fail Threshold Voltage. Sets analog<br>comparator threshold voltage. Requires<br>D_MAN_SEL = 0 for this setting to have effect.                                                                                                                                               | 0x0: Threshold voltage disabled<br>0x1: 1.85V<br>0x2: 2.15V<br>0x3: 2.40V                                                                                                            |  |
| D_VBACK_SE<br>L | 1    | Backup Battery Select. Requires D_MAN_SEL = 1 for this bit to have effect. $V_{BACK}$ can only be selected as the supply when $V_{CC} < V_{BACK}$ .                                                                                                                                 | 0x0: Use V <sub>CC</sub> as supply.<br>0x1: Use V <sub>BACK</sub> as supply.                                                                                                         |  |
| D_MAN_SEL       | 0    | When this bit is low, power-management<br>comparators are enabled and the input control block<br>decides which supply to use. When this bit is high,<br>comparators are disabled and user can manually<br>select whether to use V <sub>CC</sub> or V <sub>BACK</sub> as the supply. | 0x0: Circuit decides whether to use $V_{CC}$ or $V_{BACK}$ as the supply.<br>0x1: User decides whether to use $V_{CC}$ or $V_{BACKUP}$ as the supply by setting the D_VBACK_SEL bit. |  |

## TRICKLE\_REG (0x19)

Trickle Charge Configuration Register

| BIT   | 7               | 6 | 5 | 4 | 3 | 2      | 1        | 0 |
|-------|-----------------|---|---|---|---|--------|----------|---|
| Field | D_TRKCHG_<br>EN | - | - | - |   | D_TRIC | KLE[3:0] |   |

## Low-Current, Real-Time Clock with I<sup>2</sup>C, Power Management, and Integrated Crystal

| Reset       | 0x0         | _ | _ | _ | 0x0         |
|-------------|-------------|---|---|---|-------------|
| Access Type | Write, Read | _ | _ | _ | Write, Read |

| BITFIELD        | BITS | DESCRIPTION                                | DECODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------|------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D_TRKCHG_E<br>N | 7    | Trickle Charger Enable                     | 0x0: Trickle charger disabled<br>0x1: Trickle charger enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| D_TRICKLE       | 3:0  | Sets the Charging Path for Trickle Charger | 0x0: $3k\Omega$ in series with a Schottky diode<br>0x1: $3k\Omega$ in series with a Schottky diode<br>0x2: $6k\Omega$ in series with a Schottky diode<br>0x3: $11k\Omega$ in series with a Schottky diode<br>0x4: $3k\Omega$ in series with a diode + Schottky diode<br>0x5: $3k\Omega$ in series with a diode + Schottky diode<br>0x6: $6k\Omega$ in series with a diode + Schottky diode<br>0x7: $11k\Omega$ in series with a diode + Schottky diode<br>0x8: No connection<br>0x9: No connection<br>0xA: No connection<br>0xB: No connection<br>0xC: No connection<br>0xC: No connection<br>0xD: No connection<br>0xF: No connection |

# Ram\_reg (0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F, 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, 0x4F, 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x5B, 0x5C, 0x5D, 0x5E, 0x5F, 0x60, 0x61)

| BIT         | 7         | 6 | 5 | 4      | 3    | 2 | 1 | 0 |  |  |
|-------------|-----------|---|---|--------|------|---|---|---|--|--|
| Field       | DATA[7:0] |   |   |        |      |   |   |   |  |  |
| Reset       |           |   |   |        |      |   |   |   |  |  |
| Access Type |           |   |   | Write, | Read |   |   |   |  |  |

| BITFIELD | BITS | DESCRIPTION |
|----------|------|-------------|
| DATA     | 7:0  |             |

## **Ordering Information**

| PART NUMBER    | TEMPERATURE RANGE | PIN-PACKAGE | CRYSTAL<br>(Internal Use) |
|----------------|-------------------|-------------|---------------------------|
| MAX31329ELB+   | -40°C to +85°C    | 10 LGA      | Crystal A                 |
| MAX31329ELB+T  | -40°C to +85°C    | 10 LGA      | Crystal A                 |
| MAX31329NELB+  | -40°C to +85°C    | 10 LGA      | Crystal B                 |
| MAX31329NELB+T | -40°C to +85°C    | 10 LGA      | Crystal B                 |

+Denotes a lead(Pb)-free/RoHS-compliant package.

T = Tape and reel.

Crystal A/B identification is for internal use only. There is no difference in part performance with either crystal.