

General Description

The MAX3804 driver with integrated analog equalizer compensates up to 20dB of loss at 5GHz. It is designed to ensure PC board signal integrity up to 12.5Gbps, where frequency-dependent skin effect and dielectric losses typically produce unacceptable amounts of intersymbol interference. The MAX3804 can extend the practical chip-to-chip transmission distance for 10Gbps NRZ serial data up to 30in (0.75m) on FR-4, and it significantly decreases deterministic jitter. Residual jitter after equalization for 10.7Gbps signals is typically 24ps_{P-P} on the maximum path length.

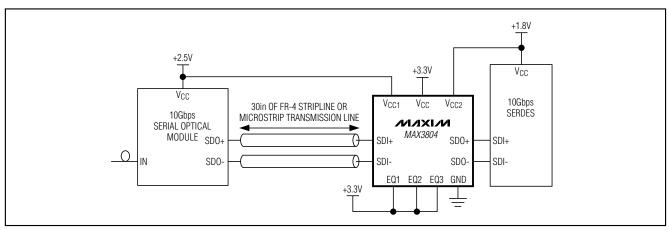
The MAX3804 is ideal for 10Gbps chip-to-chip serial interconnections on inexpensive FR-4 material. Its $3mm \times 3mm$ package affords optimal placement and routing flexibility. It has separate V_{CC} connections for internal logic and current-mode logic (CML) I/O. This allows the CML input and output to be referenced to isolated supplies, providing independent DC-coupled interfacing to 1.8V, 2.5V, or 3.3V ICs. Eight discrete levels of input equalization can be selected through a digital control input, enabling the equalizer to be matched to a range of transmission line path loss. When correctly set to match the path loss, the MAX3804 provides optimal performance over a wide range of data rates and formats.

Applications

OC-192 and 10Gb Ethernet Switches and Routers OC-192 and 10Gb Ethernet Serial Modules High-Speed Signal Distribution

_Features

- Compensates Up to 30in (0.75m) of 6-mil FR-4 Transmission Line Loss
- 115mW Operating Power
- Up to 12.5Gbps Data Rate
- ♦ Compatible with 8B10B, 64B66B, and PRBS Data
- Less than 30ps_{P-P} Residual Jitter After Equalization
- 3-Bit Equalization Level Select Input
- 3mm x 3mm Thin QFN Package
- DC-Coupling to 1.8V, 2.5V, or 3.3V CML I/O
- ♦ -40°C to +85°C Operation
- +3.3V Core Supply Voltage


MAX3804

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PACKAGE CODE
MAX3804ETE	-40°C to +85°C	16 Thin QFN (3mm x 3mm)	T1633F-3

Pin Configuration appears at end of data sheet.

Typical Operating Circuit

_ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC})	0.5V to +4.0V
CML Supply Voltage (V _{CC1} , V _{CC2})	0.5V to (V _{CC} + 0.5V)
Current at Serial Output (SDO+, SDO-)	±25mÅ
Input Voltage (SDI+, SDI-, EQ1,	
EQ2, EQ3)	0.5V to (V _{CC} + 0.5V)

Continuous Power Dissipation ($T_A = +85^{\circ}C$)	
16-Lead Thin QFN-EP (derate 17.5mW/°C	
above +85°C)	1398mW
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	55°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(V_{CC} = +3.0V to +3.6V, V_{CC1} = V_{CC2} = +1.65V to +3.6V, T_A = -40°C to +85°C. Typical values are at V_{CC} = V_{CC1} = V_{CC2} = +3.3V, and T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Supply Current	Icc			35	50	mA
CML Input Differential	VIN	AC-coupled or DC-coupled (Note 1)	400		1200	mV_{P-P}
CML Input Common Mode		DC-coupled	V _{CC1} - 0.4		V _{CC1} + 0.1	V
CML Input Termination		Single ended	42.5	50	57.5	Ω
CML Input Return Loss		Up to 5GHz		10		dB
CML Output Differential	Vout		400	500	600	mV_{P-P}
CML Output Impedance		Single ended	42.5	50	57.5	Ω
CML Output Transition Time	t _R , t _F	20% to 80% (Notes 2, 6)			35	ps
Residual Jitter Output		At 10.7Gbps (Notes 3, 4, 5, 6)		24	30	
(Total RJ, PWD, and PDJ)		At 12.5Gbps (Notes 3, 4, 5, 6)		17	30	ps _{P-P}
LVTTL Input Current	I _{IH} , I _{IL}		-30		+30	μA
LVTTL Input Low	VIL				0.8	V
LVTTL Input High	VIH		2.0			V

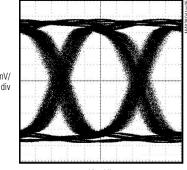
Note 1: Differential Input Sensitivity is defined at the input to a transmission line. The transmission line is differential $Z_0 = 100\Omega$, 6-mil microstrip in FR-4, $\epsilon_r = 4.5$, and tan $\delta = 0.02$, $V_{IN} = (SDI + -SDI -)$.

Note 2: Measured with 0000011111 pattern at 12.5Gbps.

Note 3: Residual jitter is the difference in total jitter (RJ, PWD, and PDJ) between the transmitted signal (at the input to the transmission line) and equalizer output. Total residual jitter is DJP-P + 14.2 x RJ_{RMS}.

Note 4: Measured at 10.7Gbps using a pattern of 100 ones, 2⁷PRBS, 100 zeros, 2⁷PRBS, and at 12.5Gbps using a K28.5 pattern. Deterministic jitter at the input is from frequency-dependent, media-induced loss only.

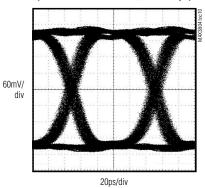
Note 5: V_{IN} = 400mV_{P-P} to 1200mV_{P-P}, input path is 0 to 30in, 6-mil microstrip in FR-4, ϵ_r = 4.5, and tan δ = 0.02.


Note 6: Guaranteed by design and characterization.

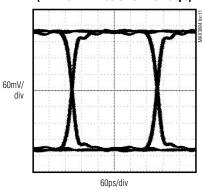
Typical Operating Characteristics

RESIDUAL JITTER RESIDUAL JITTER SUPPLY CURRENT vs. TEMPERATURE vs. INPUT AMPLITUDE vs. FR-4 PATH LENGTH 85 35 35 30in OF FR-4 400mV_{P-P} $V_{CC} = V_{CC1} = V_{CC2} = 3.3V$ TRANSMISSION LINE INPUT AMPLITUDE 30 30 27PRBS WITH 100 70 27PRBS WITH 100 CIDs AT 9.953Gbps RESIDUAL JITTER (psp-p) RESIDUAL JITTER (psp-p) SUPPLY CURRENT (mA) 25 CIDs AT 9.953Gbps 25 55 20 20 15 15 40 K28.5 AT 12.5Gbps 10 10 K28.5 AT 12.5Gbps 25 5 5 RESIDUAL JITTER RESIDUAL JITTER = DJ_{P-P} + 14.2RJ_{RMS} = DJ_{P-P} + 14.2RJ_{RMS} 10 0 0 35 60 85 -40 -15 10 1000 27 400 600 800 1200 15 21 3 9 TEMPERATURE (°C) INPUT AMPLITUDE (mVP-P) FR-4 PATH LENGTH (in) **EQUALIZER OUTPUT EYE AFTER 18in OF FR-4 RESIDUAL JITTER EQUALIZER OUTPUT EYE AFTER 18in OF FR-4** (2⁷PRBS WITH 100 CIDs AT 10.7Gbps) vs. EQUALIZATION SETTING (K28.5 AT 12.5Gbps) 35 **RESIDUAL JITTER** DJP-P + 14.2RJRMS 18in 31 RESIDUAL JITTER (psp-p) 24in 30in 27 60mV/ 60mV/ div div 23 19 400mVp_p, FR-4 27 PRBS WITH 100 CIDs AT 10.7Gbps 12in 15 000 010 011 001 100 101 110 111

16ps/div


MAX3804

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$


EQUALIZATION SETTING (EQ3, EQ2, EQ1)

Typical Operating Characteristics (continued) $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$ EQUALIZER OUTPUT EYE AFTER 30in OF FR-4 **EQUALIZER INPUT EYE AFTER 30in OF FR-4 EQUALIZER OUTPUT EYE AFTER 30in OF FR-4** (2⁷PRBS WITH 100 CIDs AT 10.7Gbps) (2⁷PRBS WITH 100 CIDs AT 10.7Gbps) (K28.5 AT 12.5Gbps) 60mV/ 60mV/ 60mV/ div div div 16ps/div 16ps/div 16ps/div

EQUALIZER OUTPUT EYE AFTER 24ft OF RG-188/U COAXIAL CABLE, SINGLE ENDED (2⁷PRBS WITH 100 CIDs, 9.953Gbps)

EQUALIZER OUTPUT EYE AFTER 30in OF FR-4 (2⁷PRBS WITH 100 CIDs AT 3.2Gbps)

MAX3804

Pin Description

PIN	NAME	FUNCTION			
1, 4	V _{CC1}	CML Input Supply Voltage. Connect to +1.8V to +3.3V for DC-coupled CML. Input can also be AC-coupled.			
2	SDI+	Positive Serial Data Input, CML			
3	SDI-	Negative Serial Data Input, CML			
5	EQ1	Equalizer Boost Control Logic Input LSB, LVTTL. See Table 1.			
6	EQ2	Equalizer Boost Control Logic Input, LVTTL. See Table 1.			
7	EQ3	Equalizer Boost Control Logic Input MSB, LVTTL. See Table 1.			
8, 16	GND	Supply Ground			
9, 12	V _{CC2}	CML Output Supply Voltage. Connect to +1.8V to +3.3V for DC-coupled CML. Output can also be AC-coupled.			
10	SDO-	Negative Serial Data Output, CML			
11	SDO+	Positive Serial Data Output, CML			
13, 14	N.C.	No Connection. Leave unconnected.			
15	V _{CC}	+3.3V Core Supply Voltage			
EP	Exposed Pad Ground. Must be soldered to the circuit board ground for proper thermal and electrical performar (see the <i>Package and Layout Considerations</i> section).				

_Detailed Description

General Theory of Operation

The MAX3804's low-noise linear input stage includes two amplifiers, one with flat-frequency response, and one with response that compensates for the loss characteristic of an FR-4 PC board transmission line. A current-steering network allows the designer to control the amount of equalization to match the path loss for specific applications. This network consists of a pair of variable attenuators feeding into a summing node. Equalization is set by a 3-bit LVTTL-compatible input (EQ3, EQ2, and EQ1). By employing fixed control of the equalization level, the MAX3804 provides optimal performance for a specific path loss. A high-speed limiting amplifier follows the equalizer circuitry to shape the output signal (see Figure 1).

CML Input and Output Buffers

The MAX3804 input and output CML buffers are terminated with 50 Ω to V_{CC1} and V_{CC2}, respectively. The equivalent circuit for the output is shown in Figure 2. Separate supply voltage connections are provided for the core (V_{CC}), input (V_{CC1}), and output (V_{CC2}) circuitry to control noise coupling, and to allow DC-coupling to +1.8V, +2.5V, or +3.3V CML ICs. The CML inputs and outputs can also be AC-coupled.

Use AC-coupling for single-ended cable applications. The unused CML input must be connected through an AC-coupling capacitor to a 50Ω termination.

The low-frequency cutoff of the input-stage offset-cancellation circuit is nominally 21kHz.

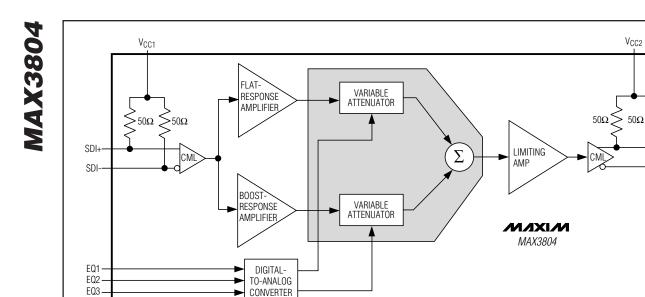
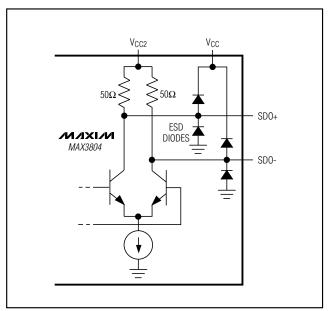


Figure 1. Functional Diagram

Applications Information

Equalizer Boost Level Control


The MAX3804 equalizer is intended for use at the receive end of an FR-4 PC board transmission line, typically up to 30in of differential 6-mil stripline or microstrip. It is specifically designed to mitigate intersymbol interference caused by the frequencydependent path loss of FR-4 transmission lines. It can also be used with a variety of other transmission-line materials and geometries, including coaxial cable, or PC board paths that include well-engineered connectors. Table 1 shows the relationship between nominal 6-mil FR-4 transmission line length and equalization setting.

Supply Voltage Connections

The CML input and output supplies (V_{CC1}, V_{CC2}) can be connected to +1.8V to +3.3V. V_{CC1} and V_{CC2} need not be connected to the same supply voltage; however, the core supply (V_{CC}) must be connected to +3.3V.

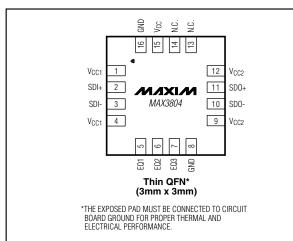
Package and Layout Considerations

The MAX3804 is packaged in a 3mm x 3mm plasticencapsulated 16-lead thin QFN package. The package has an exposed pad that provides thermal and electrical connectivity to the IC and must be soldered to a high-frequency ground. Use good layout techniques for the SDI± and SDO± PC board transmission lines, and configure the trace geometry near the IC

Vcc2

SDO+

SD0-

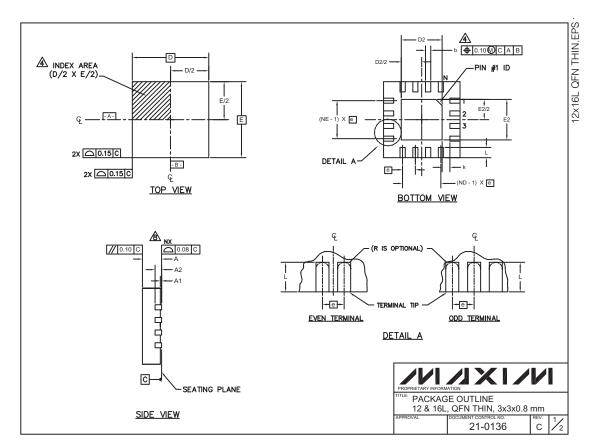

Figure 2. Simplified Output Structure

package to minimize impedance discontinuities. Power-supply decoupling capacitors should be as close as possible to the IC.

NOMINAL 6-mil FR-4 EQ3 EQ2 EQ1 **MICROSTRIP LENGTH (in)**

_ Pin Configuration

MAX3804


Chip Information

TRANSISTOR COUNT: 1007 PROCESS: SiGe bipolar

Table 1. Nominal 6-mil FR-4 TransmissionLine Length and Equalization SettingsEQ3EQ2EQ1NOMINAL 6-mil FR-4
MICROSTRIP LENGTH (in)

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to <u>www.maxim-ic.com/packages</u>.)

