

General Description

The MAX4060 evaluation kit (EV kit) is a fully assembled and tested circuit board used to evaluate the MAX4060 low-noise microphone amplifier. The MAX4060 contains a differential input amplifier typically used for an internal microphone and a single-ended auxiliary-input amplifier used for an external microphone. Both amplifiers have an internally set fixed gain of 10V/V. The MAX4060 EV kit also provides a bias voltage for powering microphones, compliant with the PC99/2001 specification.

The MAX4060 EV kit has low quiescent current and high power-supply rejection. The MAX4060 is available in 8-pin QFN and μ MAX packages. The MAX4060 EV kit uses the smaller 8-pin QFN package.

DESIGNATION	QTY	DESCRIPTION	
C1	1	0.1µF ±10%, 16V X7R ceramic capacitor (0603) TDK C1608X7R1C104K	
C2	1	10μF ±20%, 6.3V X5R ceramic capacitor (0805) TDK C2012X5R0J106MT	
C3, C4, C5	3	1μF ±10%, 10V X5R ceramic capacitors (0603) TDK C1608X5R1A105KT	
C6	1	1µF ±10%, 6.3V tantalum capacitor (0603) AVX TACL105K006R	
AUX_IN	1	3.5mm stereo jack	
OUT	1	Non-switched, PC-mount jack, red	
R1	1	100k Ω ±5% resistor (0603)	
JU1	1	3-pin header	
None	1	Shunt (JU1)	
None	1	MAX4060 PC board	
None	1	MAX4060–MAX4063 data sheet	
None	1	MAX4060 EV kit data sheet	
U1	1	MAX4060EGA (8-pin QFN)	

_Component List

Features

- ♦ 4.5V to 5.5V Single-Supply Operation
- Low 0.75mA Supply Current
- High 86dB PSRR at 1kHz
- Single-Ended and Differential Inputs
- PC99/2001 Compliant
- Low-Noise Microphone Bias Voltage
- Small 8-Pin QFN Package (3mm x 3mm)
- Fully Assembled and Tested

Ordering Information

PART	TEMP RANGE	IC PACKAGE
MAX4060EVKIT	0°C to +70°C	8 QFN

Quick Start

Equipment Setup

The MAX4060 EV kit is fully assembled and tested. Follow the steps listed below to verify board operation. **Do not turn on the power supply until all connections are completed.**

Recommended Equipment

- 5V, 100mA power supply
- Function generator
- Oscilloscope
- 1) Set the power supply to 5V.
- 2) Set the function generator's output for a sine wave with 0.2V_{P-P}, 100Hz frequency, and 0 Offset.
- 3) Turn off the power supply and function generator.

Component Suppliers

SUPPLIER	PHONE	FAX	WEBSITE
AVX	843-946-0238	843-626-3123	www.avxcorp.com
TDK	847-803-6100	847-390-4405	www.component.tdk.com

Note: Please indicate that you are using the MAX4060 when contacting these component suppliers.

M/XI/M

_ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

MAX4060 Evaluation Kit

Quick Test

- 1) Install a shunt across pins 1 and 2 of jumper JU1 (INT/AUX).
- 2) Connect the output of the function generator to the AUX_IN pad on the MAX4060 EV kit and the ground lead of the function generator to the GND pad.
- 3) Connect the 5V terminal of the power supply to the VCC pad and the ground terminal of the power supply to the GND pad.
- 4) Turn on the power supply and then the function generator.
- 5) Using the oscilloscope, verify that the signal at the OUT pad is 2VP-P.
- 6) Move the shunt on JU1 to pins 2 and 3.
- Move the output of the function generator to the IN+ pad on the MAX4060 EV kit and the ground lead of the function generator to the IN- pad.
- 8) Using the oscilloscope, verify that the signal at the OUT pad is 2V_{P-P}.

The MAX4060 EV kit evaluates the MAX4060 which contains two low-noise amplifiers: a differential amplifier typically used for amplifying an internal microphone and an auxiliary single-ended amplifier typically used for amplifying an external microphone.

The MAX4060 EV kit operates from a 4.5V to 5.5V supply and provides a DC biasing voltage with an internal, 2.5k Ω resistor to power a microphone. This DC biasing voltage is PC99/2001 compliant. The two amplifiers within the MAX4060 have an internally set fixed gain of 10V/V.

Jumper Selection Input Mode

Jumper JU1 provides an option to select between single-ended mode (AUX) and differential mode (INT) inputs. The input mode (INT/AUX) can also be controlled by an external controller connected to the (INT/AUX) pad after removing the shunt on jumper JU1 (see Table 1 for shunt positions).

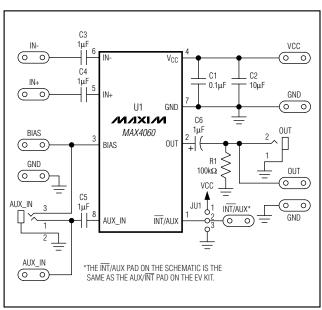


Figure 1. MAX4060 EV Kit Schematic

Table 1. JU1 Jumper Selection

SHUNT POSITION	INT/AUX PIN	EV KIT INPUT
1-2 (AUX)	Pulled up to V _{CC}	Single ended
2-3 (ĪNT)	Pulled down to GND	Differential
None. External controller connected to INT/AUX pad	Driven by external source	Driven by external source