MBRB30H30CT-1G, NRVBB30H30CT-1G, MBR30H30CTG

Switch-mode Power Rectifiers 30 V, 30 A

Features and Benefits

- Low Forward Voltage
- Low Power Loss/High Efficiency
- High Surge Capacity
- 150°C Operating Junction Temperature
- 30 A Total (15 A Per Diode Leg)
- Guard-Ring for Stress Protection
- NRVBB Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Power Supply Output Rectification
- Power Management
- Instrumentation

Mechanical Characteristics:

- Case: Epoxy, Molded
- Epoxy Meets UL 94 V-0 @ 0.125 in
- Weight: 1.5 Grams (I²PAK) (Approximately) 1.9 Grams (TO-220) (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds

ON Semiconductor®

www.onsemi.com

ORDERING AND MARKING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

MBRB30H30CT-1G, NRVBB30H30CT-1G, MBR30H30CTG

MAXIMUM RATINGS (Per Diode Leg)

Rating	Symbol	Value	Unit V	
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	30		
Average Rectified Forward Current (Rated V_R) T _C = 138°C	I _{F(AV)}	15	A	
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz)	I _{FRM}	30	A	
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}	260	A	
Operating Junction Temperature (Note 1)	TJ	-55 to +150	°C	
Storage Temperature	T _{stg}	-55 to +150	°C	
Voltage Rate of Change (Rated V _R)	dv/dt	10,000	V/μs	
Controlled Avalanche Energy (see test conditions in Figures 9 and 10)	W _{AVAL}	250	mJ	
ESD Ratings: Machine Model = C Human Body Model = 3B		> 400 > 8000	V	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. The heat generated must be less than the thermal conductivity from Junction-to-Ambient: $dP_D/dT_J < 1/R_{\theta JA}$.

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Maximum Thermal Resistance Junction-to-Case Junction-to-Ambient	R _{θJC} R _{θJA}	2.0 70	°C/W

ELECTRICAL CHARACTERISTICS (Per Diode Leg)

Rating	Symbol	Value	Unit
	v _F	0.48 0.40 0.55 0.53	V
Maximum Instantaneous Reverse Current (Note 2) (Rated DC Voltage, $T_C = 25^{\circ}C$) (Rated DC Voltage, $T_C = 125^{\circ}C$)	i _R	0.8 130	mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

MBRB30H30CT-1G, NRVBB30H30CT-1G, MBR30H30CTG

MBRB30H30CT-1G, NRVBB30H30CT-1G, MBR30H30CTG

Figure 7. Typical Capacitance

Figure 8. Thermal Response Junction-to-Case

Figure 9. Test Circuit

The unclamped inductive switching circuit shown in Figure 9 was used to demonstrate the controlled avalanche capability of this device. A mercury switch was used instead of an electronic switch to simulate a noisy environment when the switch was being opened.

When S₁ is closed at t₀ the current in the inductor I_L ramps up linearly; and energy is stored in the coil. At t₁ the switch is opened and the voltage across the diode under test begins to rise rapidly, due to di/dt effects, when this induced voltage reaches the breakdown voltage of the diode, it is clamped at BV_{DUT} and the diode begins to conduct the full load current which now starts to decay linearly through the diode, and goes to zero at t₂.

By solving the loop equation at the point in time when S_1 is opened; and calculating the energy that is transferred to the diode it can be shown that the total energy transferred is equal to the energy stored in the inductor plus a finite amount of energy from the V_{DD} power supply while the diode is in breakdown (from t_1 to t_2) minus any losses due to finite component resistances. Assuming the component resistive

ORDERING INFORMATION

Figure 10. Current–Voltage Waveforms

elements are small Equation (1) approximates the total energy transferred to the diode. It can be seen from this equation that if the V_{DD} voltage is low compared to the breakdown voltage of the device, the amount of energy contributed by the supply during breakdown is small and the total energy can be assumed to be nearly equal to the energy stored in the coil during the time when S_1 was closed, Equation (2).

EQUATION (1):

$$W_{AVAL} \approx \frac{1}{2} LI_{LPK}^{2} \left(\frac{BV_{DUT}}{BV_{DUT} - V_{DD}} \right)$$

EQUATION (2):

 $W_{AVAL} \approx \frac{1}{2} LI_{LPK}^2$

Device	Package	Shipping
MBRB30H30CT-1G	TO-262 (Pb-Free)	50 Units / Rail
NRVBB30H30CT-1G	TO-262 (Pb-Free)	50 Units / Rail
MBR30H30CTG	TO-220 (Pb-Free)	50 Units / Rail

S

onsemi

		TO-220 CASE 221A ISSUE AK						DATE	13 JAN 2022
SCALE 1:1			1. C 2. C 3. C	CONTR DIMEN LEAD	ROLLING DI ISION Z DEI D IRREGULA	MENSION FINES A ZO ARITIES AR	ONE WHERE AL E ALLOWED.		
			4. N	лах м	VIDTHFOR	F102 DEV	ICE = 1.35MM		
			Г		INC	HES	MILLIM	ETERS	
				ым 🛛	MIN.	MAX.	MIN.	MAX.	
	2 3			A	0.570	0.620	14.48	15.75	
				в	0.380	0.415	9.66	10.53	
н —	₩₩			с	0.160	0.190	4.07	4.83	
	7 \7	H I		D	0.025	0.038	0.64	0.96	
z_				F	0.142	0.161	3.60	4.09	
<u> </u>	I K			G	0.095	0.105	2.42	2.66	
				н	0.110	0.161	2.80	4.10	
	Щ Щ <u> </u>	Ü I		J	0.014	0.024	0.36	0.61	
	Г <mark>і</mark>			к	0.500	0.562	12.70	14.27	
V — + I I-	►- ``.			L	0.045	0.060	1.15	1.52	
G 	. <mark> </mark> ┘-			N	0.190	0.210	4.83	5.33	
· · · ·	- → D			Q	0.100	0.120	2.54	3.04	
	N 🖛			R	0.080	0.110	2.04	2.79	
				s	0.045	0.055	1.15	1.41	
				т	0.235	0.255	5.97	6.47	
				U	0.000	0.050	0.00	1.27	
				V	0.045		1.15		
				Z		0.080		2.04	
2. 3. 4. STYLE 5: PIN 1. 2.	BASE PIN 1. COLLECTOR 2. EMITTER 3. COLLECTOR 4. STYLE 6: GATE DRAIN 2.	EMITTER COLLECTOR EMITTER ANODE CATHODE	IN 1. CAT 2. ANO 3. GAT 4. ANO LE 7: IN 1. CAT 2. ANO	ode Te ode Thode ode		2. 3. 4. STYLE 8: PIN 1. 2.	MAIN TERMINAL MAIN TERMINAL GATE MAIN TERMINAL CATHODE ANODE	2	
4. STYLE 9: PIN 1.	DRAIN 4. STYLE 10 GATE PIN 1.	ANODE CATHODE GATE P SOURCE	3. CAT 4. ANO LE 11: IN 1. DR/ 2. SOU	ode Ain		4. STYLE 12: PIN 1.	EXTERNAL TRIP ANODE MAIN TERMINAL MAIN TERMINAL	. 1	
3.	EMITTER 3.	DRAIN SOURCE	3. GAT 4. SOL	ΤE		3.	GATE NOT CONNECTI		

 DOCUMENT NUMBER:
 98ASB42148B
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

 DESCRIPTION:
 TO-220
 PAGE 1 OF 1

 onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:	
PIN 1.	BASE	PIN 1.	GATE	PIN 1.	ANODE	PIN 1.	GATE
2.	COLLECTOR	2.	DRAIN	2.	CATHODE	2.	COLLECTOR
3.	EMITTER	3.	SOURCE	3.	ANODE	3.	EMITTER
4.	COLLECTOR	4.	DRAIN	4.	CATHODE	4.	COLLECTOR

DOCUMENT NUMBER:	98ASB16716C	6716C Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	I ² PAK (TO–262)		PAGE 1 OF 1			
ON Semiconductor and 🕅 are trademarks of Semiconductor Components Industries. LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.						

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.