-3.3 V / -5 V Differential ECL to +3.3 V LVTTL Translator

Description

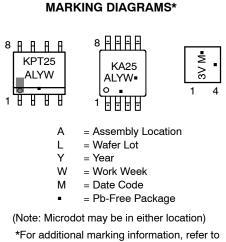
The MC100EPT25 is a Differential ECL to LVTTL translator. This device requires +3.3 V, -3.3 V to -5.2 V, and ground. The small outline 8-lead package and the single gate of the EPT25 make it ideal for applications which require the translation of a clock or data signal.

The V_{BB} output allows the EPT25 to also be used in a single-ended input mode. In this mode the V_{BB} output is tied to the D input for a inverting buffer or the \overline{D} input for a non-inverting buffer. If used, the V_{BB} pin should be bypassed to ground with at least a 0.01 μ F capacitor.

Features

- 1.1 ns Typical Propagation Delay
- Maximum Frequency > 275 MHz Typical
- Operating Range:
 - $V_{CC} = 3.0 \text{ V}$ to 3.6 V; $V_{EE} = -5.5 \text{ V}$ to -3.0 V; GND = 0 V
- 24 mA TTL Outputs
- Q Output Will Default LOW with Inputs Open or at V_{EE}
- V_{BB} Output
- Open Input Default State
- Safety Clamp on Inputs
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

ON Semiconductor®

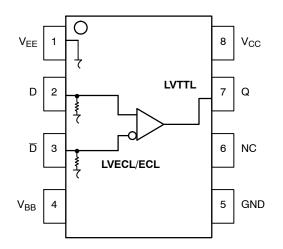

www.onsemi.com

 8
 1
 8
 1

 SOIC-8
 NB
 TSSOP-8
 DFN-8

 D SUFFIX
 CASE
 CASE
 MN SUFFIX

 751-07
 9488-02
 9488-02



Application Note <u>AND8002/D</u>.

ORDERING INFORMATION

Device	Package	Shipping [†]
MC100EPT25DG	SOIC-8 NB (Pb-Free)	98 Units/Tube
MC100EPT25DR2G	SOIC-8 NB (Pb-Free)	2500/Tape & Reel
MC100EPT25DTG	TSSOP-8 (Pb-Free)	100 Units/Tube
MC100EPT25DTR2G	TSSOP-8 (Pb-Free)	2500/Tape & Reel
MC100EPT25MNR4G	DFN-8 (Pb-Free)	1000/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

Table 1. PIN DESCRIPTION

PIN	FUNCTION				
Q	LVTTL Output				
D*, <u>D</u> *	Differential ECL Input Pair				
V _{CC}	Positive Supply				
V _{BB}	Output Reference Voltage				
GND	Ground				
V _{EE}	Negative Supply				
NC	No Connect				
EP	(DFN8 only) Thermal exposed pad must be connected to a sufficient thermal conduit. Electrically connect to the most negative supply (GND) or leave unconnected, floating open.				

Figure 1. 8-Lead Pinout (Top View) and Logic Diagram

* Pins will default LOW when left open.

Table 2. ATTRIBUTES

Characteristics	Value
Internal Input Pulldown Resistor	75 kΩ
Internal Input Pullup Resistor	N/A
ESD Protection Human Body Model Machine Model Charged Device Model	> 4 kV > 200 V > 2 kV
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)	Pb-Free Pkg
SOIC-8 NB TSSOP-8 DFN-8	Level 1 Level 3 Level 1
Flammability Rating Oxygen Index: 28 to 34	UL-94 V-0 @ 0.125 in
Transistor Count	111 Devices
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	

1. For additional information, see Application Note <u>AND8003/D</u>.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	GND = 0 V	V _{EE} = -5.0 V	3.8	V
V_{EE}	Negative Power Supply	GND = 0 V	V _{CC} = +3.3 V	-6	V
V _{IN}	Input Voltage	GND = 0 V		0 to V _{EE}	V
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-8 NB	190 130	°C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-8 NB	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	TSSOP-8	185 140	°C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board TSSOP-8		41 to 44	°C/W
θ _{JA} Thermal Resistance (Junction-to-Ambient)		0 lfpm DFN-8 500 lfpm		129 84	°C/W
T _{sol}	Wave Solder (Pb-Free)	<2 to 3 sec @ 260°C		265	°C
θ_{JC}	Thermal Resistance (Junction-to-Case)	(Note 1)	DFN-8	35 to 40	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. JEDEC standard multilayer board - 2S2P (2 signal, 2 power)

Table 4. NECL DC CHARACTERISTICS (V_{CC} = 3.3 V; V_{EE} = -5.5 V to -3.0 V; GND = 0.0 V (Note 1))						
		4000	0500			

00111

		−40°C			25°C		85°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit		
IEE	Power Supply Current	8.0	16	25	8.0	16	25	8.0	16	25	mA		
V _{IH}	Input HIGH Voltage Single-Ended	-1225	-1225		-1225		-880	-1225		-880	mV		
V _{IL}	Input LOW Voltage Single-Ended	-1945		-1625	-1945		-1625	-1945		-1625	mV		
V_{BB}	Output Voltage Reference	-1525	-1525 -1425		-1525	-1425	-1325	-1525	-1425	-1325	mV		
VIHCMR	Input HIGH Voltage Common Mode Range (Note 2)	V _{EE} + 2.0		V _{EE} + 2.0 0.0		0.0	V _{EE} + 2.0		0.0		V _{EE} + 2.0		V
IIH	Input HIGH Current			150			150			150	μA		
I _{IL}	Input LOW Current	0.5			0.5			0.5			μA		

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input parameters vary 1:1 with GND.

2. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 5. TTL OUTPUT DC CHARACTERISTICS (V _{CC}	= 3.3 V; $V_{EE} = -5.5$ V to -3.0 V; GND = 0.0 V; $T_A = -40^{\circ}$ C to 85° C)
---	---

Symbol	Characteristic	Condition	Min	Тур	Max	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -3.0 mA	2.2			V
V _{OL}	Output LOW Voltage	I _{OL} = 24 mA			0.5	V
I _{CCH}	Power Supply Current		6	10	14	mA
I _{CCL}	Power Supply Current		7	12	17	mA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

Table 6. AC CHARACTERISTICS (V_{CC} = 3.0 V to 3.6 V; V_{EE} = -5.5 V to -3.0 V; GND = 0.0 V (Note 1))

			−40°C		25°C		85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Frequency (See Figure 2 F _{max} /JITTER)				275			275			MHz
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential (Cross-Point to 1.5 V)		950	1300	800	950	1600	800	960	1600	ps
t _{SKPP}	Device-to-Device Skew (Note 2)			500			500			500	ps
tjitter	Random Clock Jitter (RMS) (See Figure 2 F _{max} /JITTER)		0.2	< 1		0.2	< 1		0.2	< 1	ps
V _{PP}	Input Voltage Swing (Differential)	150	800	1200	150	800	1200	150	800	1200	mV
t _r t _f	Output Rise/Fall TimesQ, \overline{Q} (0.8 V - 2.0 V)	300 900	474 1160	600 1400	300 900	459 1100	600 1400	300 900	457 1100	600 1400	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Measured with a 750 mV 50% duty-cycle clock source. $R_L = 500 \Omega$ to GND and $C_L = 20 \text{ pF}$ to GND. Refer to Figure 3.

2. Skews are measured between outputs under identical conditions.

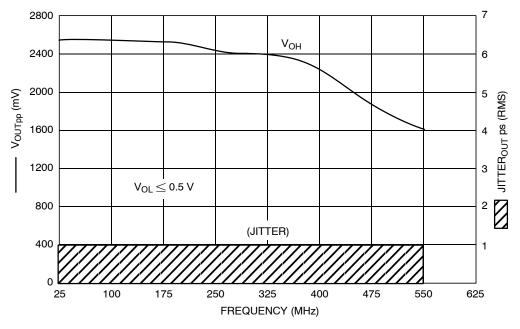
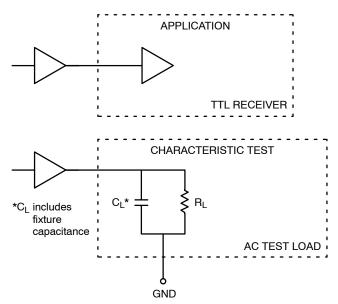
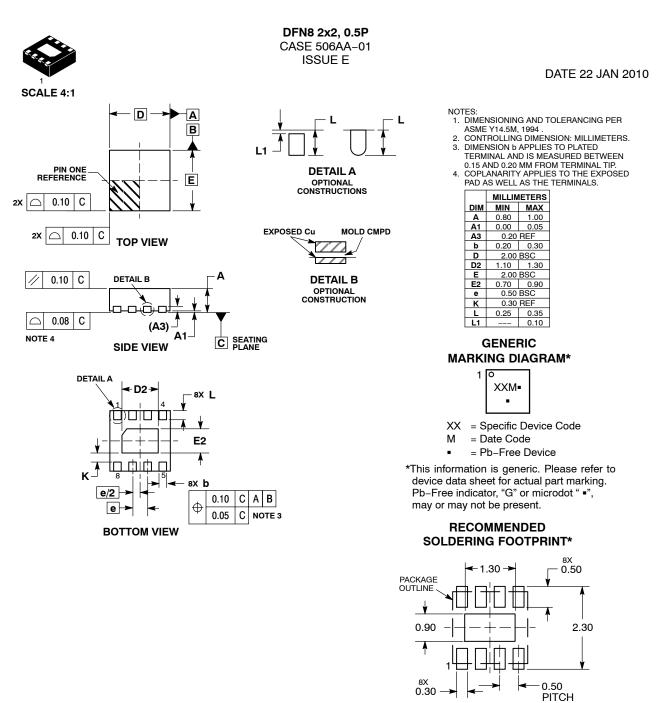


Figure 2. F_{max}/Jitter

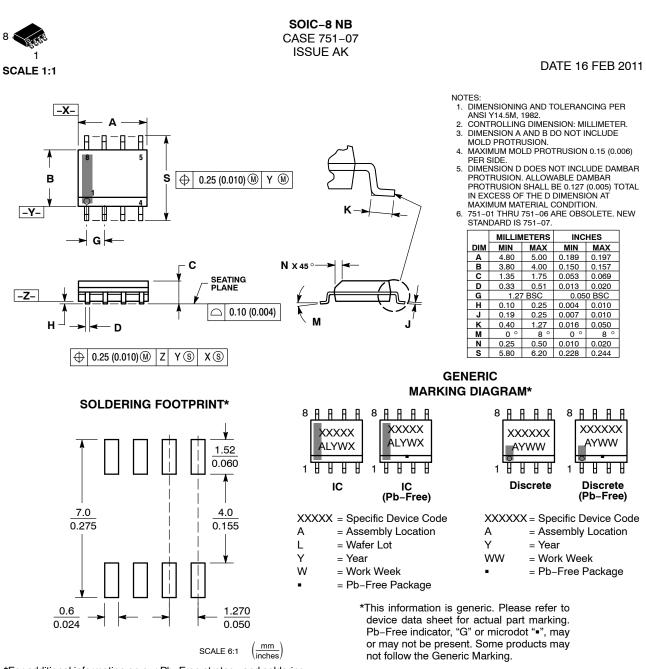



Figure 3. TTL Output Loading Used for Device Evaluation

Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	-	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	-	AC Characteristics of ECL Devices

ECLinPS is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.



DIMENSIONS: MILLIMETERS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON18658D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	DFN8, 2.0X2.0, 0.5MM PITCH PAGE 1 OF					
ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights or the						

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	PAGE 1 OF 2						
ON Semiconductor reserves the right the suitability of its products for any pa	ON Semiconductor and (a) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.						

SOIC-8 NB CASE 751-07 ISSUE AK

STYLE 1: PIN 1. EMITTER COLLECTOR 2. COLLECTOR 3. 4. EMITTER EMITTER 5. BASE 6. 7 BASE EMITTER 8. STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN DRAIN 4. GATE 5. 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6 BASE. DIE #2 BASE, DIE #1 7. 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3 GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. DRAIN 8. STYLE 17: PIN 1. VCC 2. V2OUT V10UT З. TXE 4. 5. RXE 6. VFF 7. GND 8. ACC STYLE 21: CATHODE 1 PIN 1. 2. CATHODE 2 3 CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C REXT З. 4. GND 5. IOUT 6. IOUT IOUT 7. 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. 2 EMITTER, #1 BASE, #2 З. EMITTER, #2 4. 5 COLLECTOR, #2 COLLECTOR, #2 6.

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 3. 4 COLLECTOR, #2 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: PIN 1. GROUND BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND 6 BIAS 2 INPUT 7. 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE P-SOURCE 3 P-GATE 4. P-DRAIN 5 6. P-DRAIN N-DRAIN 7. N-DRAIN 8. STYLE 18: PIN 1. ANODE 2. ANODE SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. CATHODE 8. STYLE 22 PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC COMMON CATHODE/VCC 3 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 COMMON ANODE/GND 8. STYLE 26: PIN 1. GND 2 dv/dt З. ENABLE 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8. VCC STYLE 30: DRAIN 1 PIN 1. DRAIN 1 2 GATE 2 З. SOURCE 2 4. SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5. 6.

STYLE 3: PIN 1. DRAIN, DIE #1 DRAIN, #1 2. DRAIN, #2 З. 4. DRAIN, #2 GATE, #2 5. SOURCE, #2 6. 7 GATE #1 8. SOURCE, #1 STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS THIRD STAGE SOURCE GROUND З. 4. 5. DRAIN 6. GATE 3 SECOND STAGE Vd 7. FIRST STAGE Vd 8. STYLE 11: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. DRAIN 2 DRAIN 1 7. 8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 ANODE 1 3 ANODE 1 4. 5. CATHODE, COMMON CATHODE, COMMON CATHODE, COMMON 6. 7. CATHODE, COMMON 8. STYLE 19: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. MIRROR 2 DRAIN 1 7. 8. **MIRROR 1** STYLE 23: PIN 1. LINE 1 IN COMMON ANODE/GND COMMON ANODE/GND 2. 3 LINE 2 IN 4. LINE 2 OUT 5. COMMON ANODE/GND COMMON ANODE/GND 6. 7. LINE 1 OUT 8. STYLE 27: PIN 1. ILIMIT 2 OVI 0 UVLO З. 4. INPUT+ 5. SOURCE SOURCE 6. SOURCE 7. 8 DRAIN

DATE 16 FEB 2011

STYLE 4: ANODE ANODE PIN 1. 2. ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 BASE #2 3. COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE 2. 3. 4. GATE 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 EMITTER, DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE 2. EMITTER 3 COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE 6. CATHODE COLLECTOR/ANODE 7. 8. COLLECTOR/ANODE STYLE 28: PIN 1. SW_TO_GND 2. DASIC OFF DASIC_SW_DET З. 4. GND 5. 6. V MON VBULK 7. VBULK 8 VIN

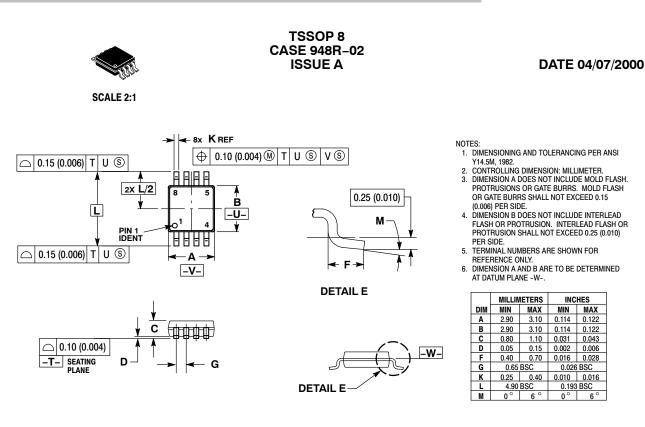
DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2	
ON Semiconductor and unarrest and the trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the				

SOURCE 1/DRAIN 2

7.

8. GATE 1

7.


8

rights of others

COLLECTOR, #1

COLLECTOR, #1

DOCUMENT NUMBER:	98AON00236D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSSOP 8		PAGE 1 OF 1	
ON Semiconductor and (1) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product any product assume any liability arising out of the application or use of any product rights nor the disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the				

[©] Semiconductor Components Industries, LLC, 2019

rights of others.