3.3 V LVTTL/LVCMOS to Differential LVPECL Translator

MC10EPT20, MC100EPT20

The MC10EPT20 is a 3.3 V TTL/CMOS to differential PECL translator. Because PECL (Positive ECL) levels are used, only +3.3 V and ground are required. The small outline SOIC–8 NB package and the single gate of the EPT20 makes it ideal for those applications where space, performance, and low power are at a premium.

The 100 Series contains temperature compensation.

Features

- 390 ps Typical Propagation Delay
- Maximum Input Clock Frequency > 1 GHz Typical
- Operating Range:
 - $V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V} \text{ with GND} = 0 \text{ V}$
- PNP TTL Input for Minimal Loading
- Q Output will Default HIGH with Input Open
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com

SOIC-8 NB D SUFFIX CASE 751-07 TSSOP-8 DT SUFFIX CASE 948R-02

DFN-8 MN SUFFIX CASE 506AA

MARKING DIAGRAMS*

1

H = MC10 K = MC100 3Q = MC100

A = Assembly Location L = Wafer Lot

= MC100 Y = Year = Date Code W = Work Week

■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

^{*}For additional marking information, refer to Application Note <u>AND8002/D</u>.

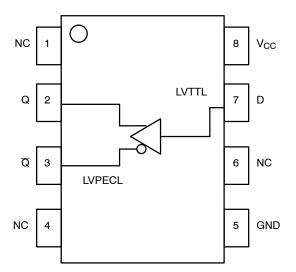


Figure 1. 8-Lead Pinout (Top View) and Logic Diagram

Table 1. PIN DESCRIPTION

PIN	FUNCTION
Q, \overline{Q}	Differential PECL Outputs
D	LVTTL Input
V _{CC}	Positive Supply
GND	Ground
NC	No Connect
EP	(DFN8 only) Thermal exposed pad must be connected to a sufficient thermal conduit. Electrically connect to the most negative supply (GND) or leave unconnected, floating open.

Table 2. ATTRIBUTES

Characteristics	Value
Internal Input Pulldown Resistor	N/A
Internal Input Pullup Resistor	N/A
ESD Protection Human Body Model Machine Model Charged Device Model	> 1.5 kV > 200 V > 2 kV
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)	Pb-Free Pkg
SOIC-8 NB TSSOP-8 DFN-8	Level 1 Level 3 Level 1
Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count	150 Devices
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	•

^{1.} For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Power Supply	GND = 0 V		6	V
VI	Input Voltage	GND = 0 V	$V_{I} \le V_{CC}$	6	V
l _{out}	Output Current	Continuous Surge		50 100	mA
TA	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			−65 to +150	°C
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient)	0 Ifpm 500 Ifpm	SOIC-8 NB	190 130	°C/W
θJC	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-8 NB	41 to 44	°C/W
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	TSSOP-8	185 140	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-8	41 to 44	°C/W
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	DFN-8	129 84	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction-to-Case)	(Note 1)	DFN-8	35 to 40	°C/W
T _{sol}	Wave Solder (Pb-Free)	<2 to 3 sec @ 260°C		265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. JEDEC standard multilayer board – 2S2P (2 signal, 2 power).

Table 4. LVTTL INPUT DC CHARACTERISTICS ($V_{CC} = 3.3 \text{ V}$, GND = 0 V, $T_A = -40 ^{\circ}\text{C}$ to $+85 ^{\circ}\text{C}$)

Symbol	Characteristic	Min	Тур	Max	Unit
I _{IH}	Input HIGH Current (V _{in} = 2.7 V)			20	μΑ
I _{IHH}	Input HIGH Current MAX (V _{in} = 6.0 V)			100	μΑ
I _{IL}	Input LOW Current (V _{in} = 0.5 V)			-0.6	mA
V _{IK}	Input Clamp Voltage (I _{in} = -18 mA)			-1.2	V
V _{IH}	Input HIGH Voltage	2.0			V
V_{IL}	Input LOW Voltage			0.8	V

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

Table 5. 10EPT PECL OUTPUT DC CHARACTERISTICS ($V_{CC} = 3.3 \text{ V}$, GND = 0 V (Note 1))

		-40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Icc	Positive Power Supply Current	18	23	28	18	23	28	19	24	29	mA
V _{OH}	Output HIGH Voltage (Note 2)	2165	2290	2415	2230	2355	2480	2290	2415	2540	mV
V _{OL}	Output LOW Voltage (Note 2)	1365	1490	1615	1430	1555	1680	1490	1615	1740	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

- 1. Output parameters vary 1:1 with V_{CC}. 2. All loading with 50 Ω to V_{CC} 2.0 V.

Table 6. 100EPT PECL OUTPUT DC CHARACTERISTICS ($V_{CC} = 3.3 \text{ V}$, GND = 0 V (Note 1))

		-40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{CC}	Positive Power Supply Current	20	25	30	22	27	32	23	28	33	mA
V _{OH}	Output HIGH Voltage (Note 2)	2155	2280	2405	2155	2280	2405	2155	2280	2405	mV
V _{OL}	Output LOW Voltage (Note 2)	1355	1480	1605	1355	1480	1605	1355	1480	1605	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

- 1. Output parameters vary 1:1 with V $_{CC}.$ 2. All loading with 50 Ω to V $_{CC}$ 2.0 V.

Table 7. AC CHARACTERISTICS ($V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$, GND = 0 V (Note 1))

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Input Clock Frequency		> 1			> 1			> 1		GHz
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential	280	350	430	300	370	450	320	400	490	ps
t _{SKEW}	Device-to-Device Skew (Note 2)			150			150			170	ps
t _{JITTER}	RMS Random Clock Jitter		1	2		1	2		1	2	ps
t _r t _f	Output Rise/Fall Times Q, \overline{Q} (20% – 80%)	70	100	170	80	120	180	90	140	190	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

- 1. Measured using a LVTTL source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} 2.0 V.
- 2. Skew is measured between outputs under identical transitions.

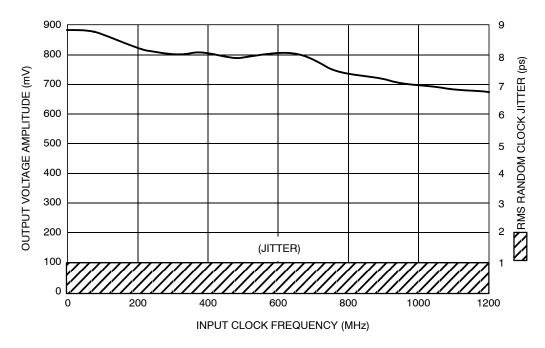


Figure 2. Output Voltage Amplitude (V_{OUTpp})/RMS Jitter vs. Input Clock Frequency at Ambient Temperature

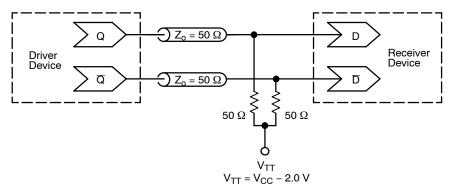


Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices.)

ORDERING INFORMATION

Device	Package	Shipping [†]
MC10EPT20DG	SOIC-8 NB (Pb-Free)	98 Units/Tube
MC10EPT20DTG	TSSOP-8 (Pb-Free)	100 Units/Tube
MC100EPT20DG	SOIC-8 NB (Pb-Free)	98 Units/Tube
MC100EPT20DR2G	SOIC-8 NB (Pb-Free)	2500 / Tape & Reel
MC100EPT20DTG	TSSOP-8 (Pb-Free)	100 Units/Tube
MC100EPT20DTR2G	TSSOP-8 (Pb-Free)	2500 / Tape & Reel
MC100EPT20MNR4G	DFN-8 (Pb-Free)	1000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes

AN1405/D - ECL Clock Distribution Techniques

AN1406/D - Designing with PECL (ECL at +5.0 V)

AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit

AN1504/D - Metastability and the ECLinPS Family

AN1568/D - Interfacing Between LVDS and ECL

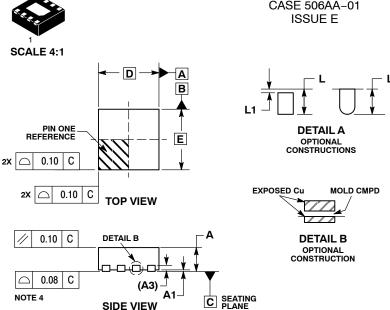
AN1672/D - The ECL Translator Guide

AND8001/D - Odd Number Counters Design

AND8002/D - Marking and Date Codes

AND8020/D - Termination of ECL Logic Devices

AND8066/D - Interfacing with ECLinPS


AND8090/D - AC Characteristics of ECL Devices

DETAIL A

е

- D2 →

BOTTOM VIEW

0.10 C

Ф

AB

0.05 C NOTE 3

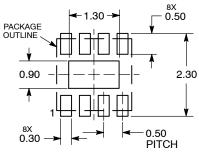
DATE 22 JAN 2010

NOTES

- DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994 . CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN
- 0.15 AND 0.20 MM FROM TERMINAL TIP. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

	MILLIMETERS							
DIM	MIN	MAX						
Α	0.80	1.00						
A1	0.00	0.05						
A3	0.20	REF						
b	0.20	0.30						
D	2.00	BSC						
D2	1.10	1.30						
E	2.00	BSC						
E2	0.70	0.90						
е	0.50	BSC						
K	0.30	REF						
L	0.25	0.35						
L1		0.10						

GENERIC MARKING DIAGRAM*


XX = Specific Device Code

= Date Code = Pb-Free Device

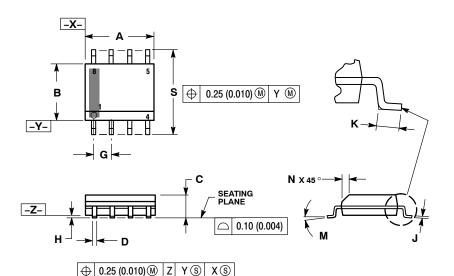
*This information is generic. Please refer to device data sheet for actual part marking.

Pb-Free indicator, "G" or microdot " ■", may or may not be present.

RECOMMENDED SOLDERING FOOTPRINT*

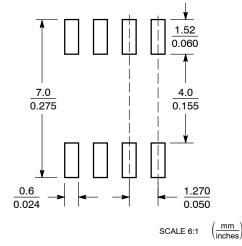
DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

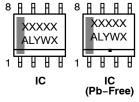

DOCUMENT NUMBER:	98AON18658D	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	DFN8, 2.0X2.0, 0.5MM PITO	CH	PAGE 1 OF 1				

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB CASE 751-07 **ISSUE AK**

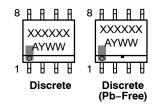

DATE 16 FEB 2011

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.


	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27	7 BSC	0.050 BSC		
Н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
K	0.40	1.27	0.016	0.050	
М	0 °	8 °	0 °	8 °	
N	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location

= Wafer Lot = Year = Work Week

= Pb-Free Package

XXXXXX = Specific Device Code = Assembly Location Α

= Year ww = Work Week

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

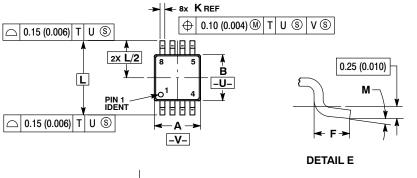
DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2				

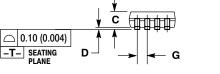
ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

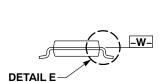
SOIC-8 NB CASE 751-07 ISSUE AK

DATE 16 FEB 2011

STYLE 4: PIN 1. ANODE 1 2. ANODE 2 3. ANODE 2 4. ANODE 5. ANODE #2 6. ANODE #2 7. ANODE #1 8. COMMON CATHODE
STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 3. BASE, #2 4. COLLECTOR, #2 5. COLLECTOR, #2 6. EMITTER, #2 STAGE Vd 7. EMITTER, #1 AGE Vd 8. COLLECTOR, #1
STYLE 12: 1 PIN 1. SOURCE 2 SOURCE 2 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN
STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COMMON 6. COLLECTOR, DIE #2 6. COMMON 7. COLLECTOR, DIE #1 6. COMMON 8. COLLECTOR, DIE #1
STYLE 20: 1 PIN 1. SOURCE (N) 2. GATE (N) 2 3. SOURCE (P) 4. GATE (P) 5. DRAIN 2 6. DRAIN 7. DRAIN 1 8. DRAIN
STYLE 24: PIN 1. BASE N ANODE/GND 2. EMITTER N ANODE/GND 3. COLLECTOR/ANODE UT 5. CATHODE N ANODE/GND 6. CATHODE N ANODE/GND 7. COLLECTOR/ANODE UT 8. COLLECTOR/ANODE
STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND E 5. V_MON E 6. VBULK E 7. VBULK 8. VIN


DOCUMENT NUMBER:	98ASB42564B	Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2	


ON Semiconductor and IN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.



TSSOP 8 CASE 948R-02 ISSUE A

DATE 04/07/2000

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH. OR GATE BURRS SHALL NOT EXCEED 0.15
- (0.006) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 5. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	2.90	3.10	0.114	0.122
В	2.90	3.10	0.114	0.122
С	0.80	1.10	0.031	0.043
D	0.05	0.15	0.002	0.006
F	0.40	0.70	0.016	0.028
G	0.65 BSC		0.026	BSC
K	0.25	0.40	0.010	0.016
L	4.90 BSC		0.193	BSC
M	٥°	6 °	٥°	6°

DOCUMENT NUMBER:	98AON00236D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSSOP 8		PAGE 1 OF 1	

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.